|
|
|
|
|
|
|
|
|
|
|
import csv
|
|
import logging
|
|
import numpy as np
|
|
from typing import Any, Callable, Dict, List, Optional, Union
|
|
import av
|
|
import torch
|
|
from torch.utils.data.dataset import Dataset
|
|
|
|
from detectron2.utils.file_io import PathManager
|
|
|
|
from ..utils import maybe_prepend_base_path
|
|
from .frame_selector import FrameSelector, FrameTsList
|
|
|
|
FrameList = List[av.frame.Frame]
|
|
FrameTransform = Callable[[torch.Tensor], torch.Tensor]
|
|
|
|
|
|
def list_keyframes(video_fpath: str, video_stream_idx: int = 0) -> FrameTsList:
|
|
"""
|
|
Traverses all keyframes of a video file. Returns a list of keyframe
|
|
timestamps. Timestamps are counts in timebase units.
|
|
|
|
Args:
|
|
video_fpath (str): Video file path
|
|
video_stream_idx (int): Video stream index (default: 0)
|
|
Returns:
|
|
List[int]: list of keyframe timestaps (timestamp is a count in timebase
|
|
units)
|
|
"""
|
|
try:
|
|
with PathManager.open(video_fpath, "rb") as io:
|
|
|
|
container = av.open(io, mode="r")
|
|
stream = container.streams.video[video_stream_idx]
|
|
keyframes = []
|
|
pts = -1
|
|
|
|
|
|
|
|
tolerance_backward_seeks = 2
|
|
while True:
|
|
try:
|
|
container.seek(pts + 1, backward=False, any_frame=False, stream=stream)
|
|
except av.AVError as e:
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
logger.debug(
|
|
f"List keyframes: Error seeking video file {video_fpath}, "
|
|
f"video stream {video_stream_idx}, pts {pts + 1}, AV error: {e}"
|
|
)
|
|
return keyframes
|
|
except OSError as e:
|
|
logger = logging.getLogger(__name__)
|
|
logger.warning(
|
|
f"List keyframes: Error seeking video file {video_fpath}, "
|
|
f"video stream {video_stream_idx}, pts {pts + 1}, OS error: {e}"
|
|
)
|
|
return []
|
|
packet = next(container.demux(video=video_stream_idx))
|
|
if packet.pts is not None and packet.pts <= pts:
|
|
logger = logging.getLogger(__name__)
|
|
logger.warning(
|
|
f"Video file {video_fpath}, stream {video_stream_idx}: "
|
|
f"bad seek for packet {pts + 1} (got packet {packet.pts}), "
|
|
f"tolerance {tolerance_backward_seeks}."
|
|
)
|
|
tolerance_backward_seeks -= 1
|
|
if tolerance_backward_seeks == 0:
|
|
return []
|
|
pts += 1
|
|
continue
|
|
tolerance_backward_seeks = 2
|
|
pts = packet.pts
|
|
if pts is None:
|
|
return keyframes
|
|
if packet.is_keyframe:
|
|
keyframes.append(pts)
|
|
return keyframes
|
|
except OSError as e:
|
|
logger = logging.getLogger(__name__)
|
|
logger.warning(
|
|
f"List keyframes: Error opening video file container {video_fpath}, " f"OS error: {e}"
|
|
)
|
|
except RuntimeError as e:
|
|
logger = logging.getLogger(__name__)
|
|
logger.warning(
|
|
f"List keyframes: Error opening video file container {video_fpath}, "
|
|
f"Runtime error: {e}"
|
|
)
|
|
return []
|
|
|
|
|
|
def read_keyframes(
|
|
video_fpath: str, keyframes: FrameTsList, video_stream_idx: int = 0
|
|
) -> FrameList:
|
|
"""
|
|
Reads keyframe data from a video file.
|
|
|
|
Args:
|
|
video_fpath (str): Video file path
|
|
keyframes (List[int]): List of keyframe timestamps (as counts in
|
|
timebase units to be used in container seek operations)
|
|
video_stream_idx (int): Video stream index (default: 0)
|
|
Returns:
|
|
List[Frame]: list of frames that correspond to the specified timestamps
|
|
"""
|
|
try:
|
|
with PathManager.open(video_fpath, "rb") as io:
|
|
|
|
container = av.open(io)
|
|
stream = container.streams.video[video_stream_idx]
|
|
frames = []
|
|
for pts in keyframes:
|
|
try:
|
|
container.seek(pts, any_frame=False, stream=stream)
|
|
frame = next(container.decode(video=0))
|
|
frames.append(frame)
|
|
except av.AVError as e:
|
|
logger = logging.getLogger(__name__)
|
|
logger.warning(
|
|
f"Read keyframes: Error seeking video file {video_fpath}, "
|
|
f"video stream {video_stream_idx}, pts {pts}, AV error: {e}"
|
|
)
|
|
container.close()
|
|
return frames
|
|
except OSError as e:
|
|
logger = logging.getLogger(__name__)
|
|
logger.warning(
|
|
f"Read keyframes: Error seeking video file {video_fpath}, "
|
|
f"video stream {video_stream_idx}, pts {pts}, OS error: {e}"
|
|
)
|
|
container.close()
|
|
return frames
|
|
except StopIteration:
|
|
logger = logging.getLogger(__name__)
|
|
logger.warning(
|
|
f"Read keyframes: Error decoding frame from {video_fpath}, "
|
|
f"video stream {video_stream_idx}, pts {pts}"
|
|
)
|
|
container.close()
|
|
return frames
|
|
|
|
container.close()
|
|
return frames
|
|
except OSError as e:
|
|
logger = logging.getLogger(__name__)
|
|
logger.warning(
|
|
f"Read keyframes: Error opening video file container {video_fpath}, OS error: {e}"
|
|
)
|
|
except RuntimeError as e:
|
|
logger = logging.getLogger(__name__)
|
|
logger.warning(
|
|
f"Read keyframes: Error opening video file container {video_fpath}, Runtime error: {e}"
|
|
)
|
|
return []
|
|
|
|
|
|
def video_list_from_file(video_list_fpath: str, base_path: Optional[str] = None):
|
|
"""
|
|
Create a list of paths to video files from a text file.
|
|
|
|
Args:
|
|
video_list_fpath (str): path to a plain text file with the list of videos
|
|
base_path (str): base path for entries from the video list (default: None)
|
|
"""
|
|
video_list = []
|
|
with PathManager.open(video_list_fpath, "r") as io:
|
|
for line in io:
|
|
video_list.append(maybe_prepend_base_path(base_path, str(line.strip())))
|
|
return video_list
|
|
|
|
|
|
def read_keyframe_helper_data(fpath: str):
|
|
"""
|
|
Read keyframe data from a file in CSV format: the header should contain
|
|
"video_id" and "keyframes" fields. Value specifications are:
|
|
video_id: int
|
|
keyframes: list(int)
|
|
Example of contents:
|
|
video_id,keyframes
|
|
2,"[1,11,21,31,41,51,61,71,81]"
|
|
|
|
Args:
|
|
fpath (str): File containing keyframe data
|
|
|
|
Return:
|
|
video_id_to_keyframes (dict: int -> list(int)): for a given video ID it
|
|
contains a list of keyframes for that video
|
|
"""
|
|
video_id_to_keyframes = {}
|
|
try:
|
|
with PathManager.open(fpath, "r") as io:
|
|
csv_reader = csv.reader(io)
|
|
header = next(csv_reader)
|
|
video_id_idx = header.index("video_id")
|
|
keyframes_idx = header.index("keyframes")
|
|
for row in csv_reader:
|
|
video_id = int(row[video_id_idx])
|
|
assert (
|
|
video_id not in video_id_to_keyframes
|
|
), f"Duplicate keyframes entry for video {fpath}"
|
|
video_id_to_keyframes[video_id] = (
|
|
[int(v) for v in row[keyframes_idx][1:-1].split(",")]
|
|
if len(row[keyframes_idx]) > 2
|
|
else []
|
|
)
|
|
except Exception as e:
|
|
logger = logging.getLogger(__name__)
|
|
logger.warning(f"Error reading keyframe helper data from {fpath}: {e}")
|
|
return video_id_to_keyframes
|
|
|
|
|
|
class VideoKeyframeDataset(Dataset):
|
|
"""
|
|
Dataset that provides keyframes for a set of videos.
|
|
"""
|
|
|
|
_EMPTY_FRAMES = torch.empty((0, 3, 1, 1))
|
|
|
|
def __init__(
|
|
self,
|
|
video_list: List[str],
|
|
category_list: Union[str, List[str], None] = None,
|
|
frame_selector: Optional[FrameSelector] = None,
|
|
transform: Optional[FrameTransform] = None,
|
|
keyframe_helper_fpath: Optional[str] = None,
|
|
):
|
|
"""
|
|
Dataset constructor
|
|
|
|
Args:
|
|
video_list (List[str]): list of paths to video files
|
|
category_list (Union[str, List[str], None]): list of animal categories for each
|
|
video file. If it is a string, or None, this applies to all videos
|
|
frame_selector (Callable: KeyFrameList -> KeyFrameList):
|
|
selects keyframes to process, keyframes are given by
|
|
packet timestamps in timebase counts. If None, all keyframes
|
|
are selected (default: None)
|
|
transform (Callable: torch.Tensor -> torch.Tensor):
|
|
transforms a batch of RGB images (tensors of size [B, 3, H, W]),
|
|
returns a tensor of the same size. If None, no transform is
|
|
applied (default: None)
|
|
|
|
"""
|
|
if type(category_list) is list:
|
|
self.category_list = category_list
|
|
else:
|
|
self.category_list = [category_list] * len(video_list)
|
|
assert len(video_list) == len(
|
|
self.category_list
|
|
), "length of video and category lists must be equal"
|
|
self.video_list = video_list
|
|
self.frame_selector = frame_selector
|
|
self.transform = transform
|
|
self.keyframe_helper_data = (
|
|
read_keyframe_helper_data(keyframe_helper_fpath)
|
|
if keyframe_helper_fpath is not None
|
|
else None
|
|
)
|
|
|
|
def __getitem__(self, idx: int) -> Dict[str, Any]:
|
|
"""
|
|
Gets selected keyframes from a given video
|
|
|
|
Args:
|
|
idx (int): video index in the video list file
|
|
Returns:
|
|
A dictionary containing two keys:
|
|
images (torch.Tensor): tensor of size [N, H, W, 3] or of size
|
|
defined by the transform that contains keyframes data
|
|
categories (List[str]): categories of the frames
|
|
"""
|
|
categories = [self.category_list[idx]]
|
|
fpath = self.video_list[idx]
|
|
keyframes = (
|
|
list_keyframes(fpath)
|
|
if self.keyframe_helper_data is None or idx not in self.keyframe_helper_data
|
|
else self.keyframe_helper_data[idx]
|
|
)
|
|
transform = self.transform
|
|
frame_selector = self.frame_selector
|
|
if not keyframes:
|
|
return {"images": self._EMPTY_FRAMES, "categories": []}
|
|
if frame_selector is not None:
|
|
keyframes = frame_selector(keyframes)
|
|
frames = read_keyframes(fpath, keyframes)
|
|
if not frames:
|
|
return {"images": self._EMPTY_FRAMES, "categories": []}
|
|
frames = np.stack([frame.to_rgb().to_ndarray() for frame in frames])
|
|
frames = torch.as_tensor(frames, device=torch.device("cpu"))
|
|
frames = frames[..., [2, 1, 0]]
|
|
frames = frames.permute(0, 3, 1, 2).float()
|
|
if transform is not None:
|
|
frames = transform(frames)
|
|
return {"images": frames, "categories": categories}
|
|
|
|
def __len__(self):
|
|
return len(self.video_list)
|
|
|