|
|
|
|
|
|
|
|
|
|
|
import logging
|
|
import numpy as np
|
|
from typing import Any, Callable, Dict, List, Optional, Union
|
|
import torch
|
|
from torch.utils.data.dataset import Dataset
|
|
|
|
from detectron2.data.detection_utils import read_image
|
|
|
|
ImageTransform = Callable[[torch.Tensor], torch.Tensor]
|
|
|
|
|
|
class ImageListDataset(Dataset):
|
|
"""
|
|
Dataset that provides images from a list.
|
|
"""
|
|
|
|
_EMPTY_IMAGE = torch.empty((0, 3, 1, 1))
|
|
|
|
def __init__(
|
|
self,
|
|
image_list: List[str],
|
|
category_list: Union[str, List[str], None] = None,
|
|
transform: Optional[ImageTransform] = None,
|
|
):
|
|
"""
|
|
Args:
|
|
image_list (List[str]): list of paths to image files
|
|
category_list (Union[str, List[str], None]): list of animal categories for
|
|
each image. If it is a string, or None, this applies to all images
|
|
"""
|
|
if type(category_list) is list:
|
|
self.category_list = category_list
|
|
else:
|
|
self.category_list = [category_list] * len(image_list)
|
|
assert len(image_list) == len(
|
|
self.category_list
|
|
), "length of image and category lists must be equal"
|
|
self.image_list = image_list
|
|
self.transform = transform
|
|
|
|
def __getitem__(self, idx: int) -> Dict[str, Any]:
|
|
"""
|
|
Gets selected images from the list
|
|
|
|
Args:
|
|
idx (int): video index in the video list file
|
|
Returns:
|
|
A dictionary containing two keys:
|
|
images (torch.Tensor): tensor of size [N, 3, H, W] (N = 1, or 0 for _EMPTY_IMAGE)
|
|
categories (List[str]): categories of the frames
|
|
"""
|
|
categories = [self.category_list[idx]]
|
|
fpath = self.image_list[idx]
|
|
transform = self.transform
|
|
|
|
try:
|
|
image = torch.from_numpy(np.ascontiguousarray(read_image(fpath, format="BGR")))
|
|
image = image.permute(2, 0, 1).unsqueeze(0).float()
|
|
if transform is not None:
|
|
image = transform(image)
|
|
return {"images": image, "categories": categories}
|
|
except (OSError, RuntimeError) as e:
|
|
logger = logging.getLogger(__name__)
|
|
logger.warning(f"Error opening image file container {fpath}: {e}")
|
|
|
|
return {"images": self._EMPTY_IMAGE, "categories": []}
|
|
|
|
def __len__(self):
|
|
return len(self.image_list)
|
|
|