|
|
|
|
|
|
|
|
|
import random
|
|
from collections import deque
|
|
from typing import Any, Collection, Deque, Iterable, Iterator, List, Sequence
|
|
|
|
Loader = Iterable[Any]
|
|
|
|
|
|
def _pooled_next(iterator: Iterator[Any], pool: Deque[Any]):
|
|
if not pool:
|
|
pool.extend(next(iterator))
|
|
return pool.popleft()
|
|
|
|
|
|
class CombinedDataLoader:
|
|
"""
|
|
Combines data loaders using the provided sampling ratios
|
|
"""
|
|
|
|
BATCH_COUNT = 100
|
|
|
|
def __init__(self, loaders: Collection[Loader], batch_size: int, ratios: Sequence[float]):
|
|
self.loaders = loaders
|
|
self.batch_size = batch_size
|
|
self.ratios = ratios
|
|
|
|
def __iter__(self) -> Iterator[List[Any]]:
|
|
iters = [iter(loader) for loader in self.loaders]
|
|
indices = []
|
|
pool = [deque()] * len(iters)
|
|
|
|
while True:
|
|
if not indices:
|
|
|
|
|
|
k = self.batch_size * self.BATCH_COUNT
|
|
indices = random.choices(range(len(self.loaders)), self.ratios, k=k)
|
|
try:
|
|
batch = [_pooled_next(iters[i], pool[i]) for i in indices[: self.batch_size]]
|
|
except StopIteration:
|
|
break
|
|
indices = indices[self.batch_size :]
|
|
yield batch
|
|
|