|
|
|
|
|
|
|
|
|
from typing import Dict
|
|
import torch
|
|
from torch.nn import functional as F
|
|
|
|
from detectron2.structures.boxes import Boxes, BoxMode
|
|
|
|
from ..structures import (
|
|
DensePoseChartPredictorOutput,
|
|
DensePoseChartResult,
|
|
DensePoseChartResultWithConfidences,
|
|
)
|
|
from . import resample_fine_and_coarse_segm_to_bbox
|
|
from .base import IntTupleBox, make_int_box
|
|
|
|
|
|
def resample_uv_tensors_to_bbox(
|
|
u: torch.Tensor,
|
|
v: torch.Tensor,
|
|
labels: torch.Tensor,
|
|
box_xywh_abs: IntTupleBox,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Resamples U and V coordinate estimates for the given bounding box
|
|
|
|
Args:
|
|
u (tensor [1, C, H, W] of float): U coordinates
|
|
v (tensor [1, C, H, W] of float): V coordinates
|
|
labels (tensor [H, W] of long): labels obtained by resampling segmentation
|
|
outputs for the given bounding box
|
|
box_xywh_abs (tuple of 4 int): bounding box that corresponds to predictor outputs
|
|
Return:
|
|
Resampled U and V coordinates - a tensor [2, H, W] of float
|
|
"""
|
|
x, y, w, h = box_xywh_abs
|
|
w = max(int(w), 1)
|
|
h = max(int(h), 1)
|
|
u_bbox = F.interpolate(u, (h, w), mode="bilinear", align_corners=False)
|
|
v_bbox = F.interpolate(v, (h, w), mode="bilinear", align_corners=False)
|
|
uv = torch.zeros([2, h, w], dtype=torch.float32, device=u.device)
|
|
for part_id in range(1, u_bbox.size(1)):
|
|
uv[0][labels == part_id] = u_bbox[0, part_id][labels == part_id]
|
|
uv[1][labels == part_id] = v_bbox[0, part_id][labels == part_id]
|
|
return uv
|
|
|
|
|
|
def resample_uv_to_bbox(
|
|
predictor_output: DensePoseChartPredictorOutput,
|
|
labels: torch.Tensor,
|
|
box_xywh_abs: IntTupleBox,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Resamples U and V coordinate estimates for the given bounding box
|
|
|
|
Args:
|
|
predictor_output (DensePoseChartPredictorOutput): DensePose predictor
|
|
output to be resampled
|
|
labels (tensor [H, W] of long): labels obtained by resampling segmentation
|
|
outputs for the given bounding box
|
|
box_xywh_abs (tuple of 4 int): bounding box that corresponds to predictor outputs
|
|
Return:
|
|
Resampled U and V coordinates - a tensor [2, H, W] of float
|
|
"""
|
|
return resample_uv_tensors_to_bbox(
|
|
predictor_output.u,
|
|
predictor_output.v,
|
|
labels,
|
|
box_xywh_abs,
|
|
)
|
|
|
|
|
|
def densepose_chart_predictor_output_to_result(
|
|
predictor_output: DensePoseChartPredictorOutput, boxes: Boxes
|
|
) -> DensePoseChartResult:
|
|
"""
|
|
Convert densepose chart predictor outputs to results
|
|
|
|
Args:
|
|
predictor_output (DensePoseChartPredictorOutput): DensePose predictor
|
|
output to be converted to results, must contain only 1 output
|
|
boxes (Boxes): bounding box that corresponds to the predictor output,
|
|
must contain only 1 bounding box
|
|
Return:
|
|
DensePose chart-based result (DensePoseChartResult)
|
|
"""
|
|
assert len(predictor_output) == 1 and len(boxes) == 1, (
|
|
f"Predictor output to result conversion can operate only single outputs"
|
|
f", got {len(predictor_output)} predictor outputs and {len(boxes)} boxes"
|
|
)
|
|
|
|
boxes_xyxy_abs = boxes.tensor.clone()
|
|
boxes_xywh_abs = BoxMode.convert(boxes_xyxy_abs, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
|
|
box_xywh = make_int_box(boxes_xywh_abs[0])
|
|
|
|
labels = resample_fine_and_coarse_segm_to_bbox(predictor_output, box_xywh).squeeze(0)
|
|
uv = resample_uv_to_bbox(predictor_output, labels, box_xywh)
|
|
return DensePoseChartResult(labels=labels, uv=uv)
|
|
|
|
|
|
def resample_confidences_to_bbox(
|
|
predictor_output: DensePoseChartPredictorOutput,
|
|
labels: torch.Tensor,
|
|
box_xywh_abs: IntTupleBox,
|
|
) -> Dict[str, torch.Tensor]:
|
|
"""
|
|
Resamples confidences for the given bounding box
|
|
|
|
Args:
|
|
predictor_output (DensePoseChartPredictorOutput): DensePose predictor
|
|
output to be resampled
|
|
labels (tensor [H, W] of long): labels obtained by resampling segmentation
|
|
outputs for the given bounding box
|
|
box_xywh_abs (tuple of 4 int): bounding box that corresponds to predictor outputs
|
|
Return:
|
|
Resampled confidences - a dict of [H, W] tensors of float
|
|
"""
|
|
|
|
x, y, w, h = box_xywh_abs
|
|
w = max(int(w), 1)
|
|
h = max(int(h), 1)
|
|
|
|
confidence_names = [
|
|
"sigma_1",
|
|
"sigma_2",
|
|
"kappa_u",
|
|
"kappa_v",
|
|
"fine_segm_confidence",
|
|
"coarse_segm_confidence",
|
|
]
|
|
confidence_results = {key: None for key in confidence_names}
|
|
confidence_names = [
|
|
key for key in confidence_names if getattr(predictor_output, key) is not None
|
|
]
|
|
confidence_base = torch.zeros([h, w], dtype=torch.float32, device=predictor_output.u.device)
|
|
|
|
|
|
for key in confidence_names:
|
|
resampled_confidence = F.interpolate(
|
|
getattr(predictor_output, key),
|
|
(h, w),
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
)
|
|
result = confidence_base.clone()
|
|
for part_id in range(1, predictor_output.u.size(1)):
|
|
if resampled_confidence.size(1) != predictor_output.u.size(1):
|
|
|
|
continue
|
|
result[labels == part_id] = resampled_confidence[0, part_id][labels == part_id]
|
|
|
|
if resampled_confidence.size(1) != predictor_output.u.size(1):
|
|
|
|
|
|
result = resampled_confidence[0, 0]
|
|
|
|
confidence_results[key] = result
|
|
|
|
return confidence_results
|
|
|
|
|
|
def densepose_chart_predictor_output_to_result_with_confidences(
|
|
predictor_output: DensePoseChartPredictorOutput, boxes: Boxes
|
|
) -> DensePoseChartResultWithConfidences:
|
|
"""
|
|
Convert densepose chart predictor outputs to results
|
|
|
|
Args:
|
|
predictor_output (DensePoseChartPredictorOutput): DensePose predictor
|
|
output with confidences to be converted to results, must contain only 1 output
|
|
boxes (Boxes): bounding box that corresponds to the predictor output,
|
|
must contain only 1 bounding box
|
|
Return:
|
|
DensePose chart-based result with confidences (DensePoseChartResultWithConfidences)
|
|
"""
|
|
assert len(predictor_output) == 1 and len(boxes) == 1, (
|
|
f"Predictor output to result conversion can operate only single outputs"
|
|
f", got {len(predictor_output)} predictor outputs and {len(boxes)} boxes"
|
|
)
|
|
|
|
boxes_xyxy_abs = boxes.tensor.clone()
|
|
boxes_xywh_abs = BoxMode.convert(boxes_xyxy_abs, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
|
|
box_xywh = make_int_box(boxes_xywh_abs[0])
|
|
|
|
labels = resample_fine_and_coarse_segm_to_bbox(predictor_output, box_xywh).squeeze(0)
|
|
uv = resample_uv_to_bbox(predictor_output, labels, box_xywh)
|
|
confidences = resample_confidences_to_bbox(predictor_output, labels, box_xywh)
|
|
return DensePoseChartResultWithConfidences(labels=labels, uv=uv, **confidences)
|
|
|