File size: 22,001 Bytes
f717329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import (
    FluxLoraLoaderMixin,
    FromSingleFileMixin,
    TextualInversionLoaderMixin,
)
from diffusers.models.autoencoders import AutoencoderKL
from diffusers.pipelines.flux.pipeline_flux_fill import (
    calculate_shift,
    retrieve_latents,
    retrieve_timesteps,
)
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor

from model.flux.transformer_flux import FluxTransformer2DModel

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

# Modified from `diffusers.pipelines.flux.pipeline_flux_fill.FluxFillPipeline`
class FluxTryOnPipeline(
    DiffusionPipeline,
    FluxLoraLoaderMixin,
    FromSingleFileMixin,
    TextualInversionLoaderMixin,
):
    model_cpu_offload_seq = "transformer->vae"
    _optional_components = []
    _callback_tensor_inputs = ["latents"]
    
    def __init__(

        self, 

        vae: AutoencoderKL, 

        scheduler: FlowMatchEulerDiscreteScheduler, 

        transformer: FluxTransformer2DModel,

    ):
        super().__init__()
        self.register_modules(
            vae=vae,
            scheduler=scheduler,
            transformer=transformer,
        )
        
        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
        )
        
        # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
        # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor * 2,
            vae_latent_channels=self.vae.config.latent_channels,
            do_normalize=False,
            do_binarize=True,
            do_convert_grayscale=True,
        )
        self.default_sample_size = 128
        
        self.transformer.remove_text_layers() # TryOnEdit: remove text layers
    
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, subfolder=None, **kwargs):
        transformer = FluxTransformer2DModel.from_pretrained(pretrained_model_name_or_path, subfolder="transformer")
        transformer.remove_text_layers()
        vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
        scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
        return FluxTryOnPipeline(vae, scheduler, transformer)
    
    def prepare_mask_latents(

        self,

        mask,

        masked_image,

        batch_size,

        num_channels_latents,

        num_images_per_prompt,

        height,

        width,

        dtype,

        device,

        generator,

    ):
        # 1. calculate the height and width of the latents
        # VAE applies 8x compression on images but we must also account for packing which requires
        # latent height and width to be divisible by 2.
        height = 2 * (int(height) // (self.vae_scale_factor * 2))
        width = 2 * (int(width) // (self.vae_scale_factor * 2))

        # 2. encode the masked image
        if masked_image.shape[1] == num_channels_latents:
            masked_image_latents = masked_image
        else:
            masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)

        masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
        masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)

        # 3. duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
        batch_size = batch_size * num_images_per_prompt
        if mask.shape[0] < batch_size:
            if not batch_size % mask.shape[0] == 0:
                raise ValueError(
                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
                    " of masks that you pass is divisible by the total requested batch size."
                )
            mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
        if masked_image_latents.shape[0] < batch_size:
            if not batch_size % masked_image_latents.shape[0] == 0:
                raise ValueError(
                    "The passed images and the required batch size don't match. Images are supposed to be duplicated"
                    f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
                    " Make sure the number of images that you pass is divisible by the total requested batch size."
                )
            masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)

        # 4. pack the masked_image_latents
        # batch_size, num_channels_latents, height, width -> batch_size, height//2 * width//2 , num_channels_latents*4
        masked_image_latents = self._pack_latents(
            masked_image_latents,
            batch_size,
            num_channels_latents,
            height,
            width,
        )

        # 5.resize mask to latents shape we we concatenate the mask to the latents
        mask = mask[:, 0, :, :]  # batch_size, 8 * height, 8 * width (mask has not been 8x compressed)
        mask = mask.view(
            batch_size, height, self.vae_scale_factor, width, self.vae_scale_factor
        )  # batch_size, height, 8, width, 8
        mask = mask.permute(0, 2, 4, 1, 3)  # batch_size, 8, 8, height, width
        mask = mask.reshape(
            batch_size, self.vae_scale_factor * self.vae_scale_factor, height, width
        )  # batch_size, 8*8, height, width

        # 6. pack the mask:
        # batch_size, 64, height, width -> batch_size, height//2 * width//2 , 64*2*2
        mask = self._pack_latents(
            mask,
            batch_size,
            self.vae_scale_factor * self.vae_scale_factor,
            height,
            width,
        )
        mask = mask.to(device=device, dtype=dtype)

        return mask, masked_image_latents

    def check_inputs(

        self,

        height,

        width,

        callback_on_step_end_tensor_inputs=None,

        max_sequence_length=None,

        image=None,

        mask_image=None,

        condition_image=None,

        masked_image_latents=None,

    ):
        if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
            logger.warning(
                f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if max_sequence_length is not None and max_sequence_length > 512:
            raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")

        if image is not None and masked_image_latents is not None:
            raise ValueError(
                "Please provide either  `image` or `masked_image_latents`, `masked_image_latents` should not be passed."
            )

        if image is not None and mask_image is None:
            raise ValueError("Please provide `mask_image` when passing `image`.")
        
        if condition_image is None:
            raise ValueError("Please provide `condition_image`.")

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
    def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
        latent_image_ids = torch.zeros(height, width, 3)
        latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
        latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]

        latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape

        latent_image_ids = latent_image_ids.reshape(
            latent_image_id_height * latent_image_id_width, latent_image_id_channels
        )

        return latent_image_ids.to(device=device, dtype=dtype)

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
    def _pack_latents(latents, batch_size, num_channels_latents, height, width):
        latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
        latents = latents.permute(0, 2, 4, 1, 3, 5)
        latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)

        return latents

    @staticmethod
    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
    def _unpack_latents(latents, height, width, vae_scale_factor):
        batch_size, num_patches, channels = latents.shape

        # VAE applies 8x compression on images but we must also account for packing which requires
        # latent height and width to be divisible by 2.
        height = 2 * (int(height) // (vae_scale_factor * 2))
        width = 2 * (int(width) // (vae_scale_factor * 2))

        latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
        latents = latents.permute(0, 3, 1, 4, 2, 5)

        latents = latents.reshape(batch_size, channels // (2 * 2), height, width)

        return latents

    def enable_vae_slicing(self):
        r"""

        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to

        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.

        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""

        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to

        computing decoding in one step.

        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""

        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to

        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow

        processing larger images.

        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""

        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to

        computing decoding in one step.

        """
        self.vae.disable_tiling()

    # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
    def prepare_latents(

        self,

        batch_size,

        num_channels_latents,

        height,

        width,

        dtype,

        device,

        generator,

        latents=None,

    ):
        # VAE applies 8x compression on images but we must also account for packing which requires
        # latent height and width to be divisible by 2.
        height = 2 * (int(height) // (self.vae_scale_factor * 2))
        width = 2 * (int(width) // (self.vae_scale_factor * 2))

        shape = (batch_size, num_channels_latents, height, width)

        if latents is not None:
            latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
            return latents.to(device=device, dtype=dtype), latent_image_ids

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)

        latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)

        return latents, latent_image_ids

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def joint_attention_kwargs(self):
        return self._joint_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt
    
    @torch.no_grad()
    def __call__(

        self,

        image: Optional[torch.FloatTensor] = None,

        condition_image: Optional[torch.FloatTensor] = None,  # TryOnEdit: condition image (garment)

        mask_image: Optional[torch.FloatTensor] = None,

        masked_image_latents: Optional[torch.FloatTensor] = None,

        height: Optional[int] = None,

        width: Optional[int] = None,

        num_inference_steps: int = 50,

        sigmas: Optional[List[float]] = None,

        guidance_scale: float = 30.0,

        num_images_per_prompt: Optional[int] = 1,

        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,

        latents: Optional[torch.FloatTensor] = None,

        output_type: Optional[str] = "pil",

        return_dict: bool = True,

        joint_attention_kwargs: Optional[Dict[str, Any]] = None,

        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,

        callback_on_step_end_tensor_inputs: List[str] = ["latents"],

        max_sequence_length: int = 512,

    ):
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor
        
        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            height,
            width,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            max_sequence_length=max_sequence_length,
            image=image,
            mask_image=mask_image,
            condition_image=condition_image,
            masked_image_latents=masked_image_latents,
        )
        
        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False
        
        # 2. Define call parameters
        batch_size = 1
        device = self._execution_device
        dtype = self.transformer.dtype
        
        # 3. Prepare prompt embeddings
        lora_scale = (
            self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
        )
        
        # 4. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
        latents, latent_image_ids = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width * 2, # TryOnEdit: width * 2
            dtype,
            device,
            generator,
            latents,
        )
        
        # 5. Prepare mask and masked image latents
        if masked_image_latents is not None:
            masked_image_latents = masked_image_latents.to(latents.device)
        else:
            image = self.image_processor.preprocess(image, height=height, width=width)
            condition_image = self.image_processor.preprocess(condition_image, height=height, width=width)
            mask_image = self.mask_processor.preprocess(mask_image, height=height, width=width)

            masked_image = image * (1 - mask_image)
            masked_image = masked_image.to(device=device, dtype=dtype)
            
            # TryOnEdit: Concat condition image to masked image
            condition_image = condition_image.to(device=device, dtype=dtype)
            masked_image = torch.cat((masked_image, condition_image), dim=-1)
            mask_image = torch.cat((mask_image, torch.zeros_like(mask_image)), dim=-1)

            height, width = image.shape[-2:]
            mask, masked_image_latents = self.prepare_mask_latents(
                mask_image,
                masked_image,
                batch_size,
                num_channels_latents,
                num_images_per_prompt,
                height,
                width * 2, # TryOnEdit: width * 2
                dtype,
                device,
                generator,
            )
            masked_image_latents = torch.cat((masked_image_latents, mask), dim=-1)
        
        # 6. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
        image_seq_len = latents.shape[1]
        mu = calculate_shift(
            image_seq_len,
            self.scheduler.config.base_image_seq_len,
            self.scheduler.config.max_image_seq_len,
            self.scheduler.config.base_shift,
            self.scheduler.config.max_shift,
        )
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            sigmas=sigmas,
            mu=mu,
        )
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)
        
        # handle guidance
        if self.transformer.config.guidance_embeds:
            guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
            guidance = guidance.expand(latents.shape[0])
        else:
            guidance = None
        
        # 7. Denoising loop
        pooled_prompt_embeds = torch.zeros([latents.shape[0], 768], device=device, dtype=dtype) # TryOnEdit: for now, we don't use pooled prompt embeddings
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue
                
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latents.shape[0]).to(latents.dtype)

                noise_pred = self.transformer(
                    hidden_states=torch.cat((latents, masked_image_latents), dim=2),
                    timestep=timestep / 1000,
                    guidance=guidance,
                    pooled_projections=pooled_prompt_embeds,
                    encoder_hidden_states=None,
                    txt_ids=None,
                    img_ids=latent_image_ids,
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                )[0]

                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        # 8. Post-process the image
        if output_type == "latent":
            image = latents
        else:
            latents = self._unpack_latents(latents, height, width * 2, self.vae_scale_factor) # TryOnEdit: width * 2
            latents = latents.split(latents.shape[-1] // 2, dim=-1)[0]  # TryOnEdit: split along the last dimension
            latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
            image = self.vae.decode(latents, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return FluxPipelineOutput(images=image)