File size: 1,773 Bytes
f717329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

# pyre-unsafe

from dataclasses import dataclass
from typing import Union
import torch


@dataclass
class DensePoseEmbeddingPredictorOutput:
    """

    Predictor output that contains embedding and coarse segmentation data:

     * embedding: float tensor of size [N, D, H, W], contains estimated embeddings

     * coarse_segm: float tensor of size [N, K, H, W]

    Here D = MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_SIZE

         K = MODEL.ROI_DENSEPOSE_HEAD.NUM_COARSE_SEGM_CHANNELS

    """

    embedding: torch.Tensor
    coarse_segm: torch.Tensor

    def __len__(self):
        """

        Number of instances (N) in the output

        """
        return self.coarse_segm.size(0)

    def __getitem__(

        self, item: Union[int, slice, torch.BoolTensor]

    ) -> "DensePoseEmbeddingPredictorOutput":
        """

        Get outputs for the selected instance(s)



        Args:

            item (int or slice or tensor): selected items

        """
        if isinstance(item, int):
            return DensePoseEmbeddingPredictorOutput(
                coarse_segm=self.coarse_segm[item].unsqueeze(0),
                embedding=self.embedding[item].unsqueeze(0),
            )
        else:
            return DensePoseEmbeddingPredictorOutput(
                coarse_segm=self.coarse_segm[item], embedding=self.embedding[item]
            )

    def to(self, device: torch.device):
        """

        Transfers all tensors to the given device

        """
        coarse_segm = self.coarse_segm.to(device)
        embedding = self.embedding.to(device)
        return DensePoseEmbeddingPredictorOutput(coarse_segm=coarse_segm, embedding=embedding)