Spaces:
Running
on
A100
Running
on
A100
| # Copyright (c) 2025 NVIDIA CORPORATION. | |
| # Licensed under the MIT license. | |
| # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
| # LICENSE is in incl_licenses directory. | |
| import os | |
| from copy import deepcopy | |
| import matplotlib.pyplot as plt | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.autograd.function import Function, InplaceFunction | |
| from torch.cuda import amp | |
| from .Qconfig import qconfig | |
| from .QFunction import * | |
| from .utils import * | |
| class QLinear(nn.Linear): | |
| def __init__(self, in_features, out_features, bias=True, args=None, layer_type=""): | |
| super().__init__(in_features, out_features, bias) | |
| self.args = deepcopy(args) | |
| self.layer_type = layer_type | |
| assert layer_type != "", "layer_type is not defined" | |
| assert layer_type in qconfig.qlinear_config.keys(), f"{layer_type} not in qlinear_config" | |
| self.apply_quantize = list_has_common_element(args.qchoice, qconfig.qlinear_config[layer_type]) | |
| self.apply_quantize_fw, self.apply_quantize_fo, self.apply_quantize_bw, self.apply_quantize_ba = ( | |
| self.apply_quantize, | |
| self.apply_quantize, | |
| self.apply_quantize, | |
| self.apply_quantize, | |
| ) | |
| self.refine_rowcol_blocksize() | |
| self.fbit = self.args.fwbit if self.args.fwbit else self.Ubit | |
| self.bbit = self.args.bwbit if self.args.bwbit else self.Ubit | |
| quantize_flag = format_string_with_condition( | |
| layer_type, | |
| { | |
| "apply-fw": self.apply_quantize_fw, | |
| "apply-fo": self.apply_quantize_fo, | |
| "apply-bw": self.apply_quantize_bw, | |
| "apply-ba": self.apply_quantize_ba, | |
| }, | |
| self.args.symm, | |
| self.fbit, | |
| self.bbit, | |
| { | |
| "row-fa": self.args.row_blocksize_fa, | |
| "col-fa": self.args.col_blocksize_fa, | |
| "row-fw": self.args.row_blocksize_fw, | |
| "col-fw": self.args.col_blocksize_fw, | |
| "row-fo": self.args.row_blocksize_fo, | |
| "col-fo": self.args.col_blocksize_fo, | |
| "row-ba": self.args.row_blocksize_ba, | |
| "col-ba": self.args.col_blocksize_ba, | |
| "row-bw": self.args.row_blocksize_bw, | |
| "col-bw": self.args.col_blocksize_bw, | |
| "row-bo": self.args.row_blocksize_bo, | |
| "col-bo": self.args.col_blocksize_bo, | |
| }, | |
| ) | |
| if quant_get_local_rank() == 0: | |
| print(quantize_flag) | |
| def refine_rowcol_blocksize(self): | |
| self.args.row_blocksize_fa, self.args.col_blocksize_fa = self.args.row_blocksize, self.args.col_blocksize | |
| self.args.row_blocksize_fw, self.args.col_blocksize_fw = self.args.row_blocksize, self.args.col_blocksize | |
| self.args.row_blocksize_fo, self.args.col_blocksize_fo = self.args.row_blocksize, self.args.col_blocksize | |
| self.args.row_blocksize_ba, self.args.col_blocksize_ba = self.args.row_blocksize, self.args.col_blocksize | |
| self.args.row_blocksize_bw, self.args.col_blocksize_bw = self.args.row_blocksize, self.args.col_blocksize | |
| self.args.row_blocksize_bo, self.args.col_blocksize_bo = self.args.row_blocksize, self.args.col_blocksize | |
| if self.args.refine_attn_blocksize: | |
| if self.layer_type in ["attn_q", "attn_k", "attn_v"]: | |
| self.apply_quantize_fo = False | |
| self.args.row_blocksize_ba, self.args.col_blocksize_ba = ( | |
| self.args.refine_row_blocksize, | |
| self.args.refine_col_blocksize, | |
| ) | |
| if self.layer_type in ["attn_proj"]: | |
| self.apply_quantize_ba = False | |
| self.args.row_blocksize_fo, self.args.col_blocksize_fo = ( | |
| self.args.refine_row_blocksize, | |
| self.args.refine_col_blocksize, | |
| ) | |
| if self.args.refine_mlp_blocksize: | |
| if self.layer_type in ["mlp_gate", "mlp_up", "mlp_down"]: | |
| self.args.row_blocksize_fo, self.args.col_blocksize_fo = ( | |
| self.args.refine_row_blocksize, | |
| self.args.refine_col_blocksize, | |
| ) | |
| self.args.row_blocksize_ba, self.args.col_blocksize_ba = ( | |
| self.args.refine_row_blocksize, | |
| self.args.refine_col_blocksize, | |
| ) | |
| def forward(self, Qinput, Iscale): | |
| if self.training: | |
| output = QuantLinear.apply( | |
| Qinput, | |
| Iscale, | |
| self.weight, | |
| self.bias, | |
| self.args, | |
| self.layer_name, | |
| self.apply_quantize_fw, | |
| self.apply_quantize_fo, | |
| self.apply_quantize_bw, | |
| self.apply_quantize_ba, | |
| ) | |
| return output | |
| else: | |
| output = F.linear(Qinput, self.weight, self.bias) | |
| return output, None | |
| # class QuantLinear(Function): | |
| # @staticmethod | |
| # def forward(ctx, input, weight, bias, args, layer_type): | |
| # ctx.saved = input, weight, bias, args, layer_type | |
| # return F.linear(input, weight, bias) | |
| # | |
| # @staticmethod | |
| # def backward(ctx, grad_output): | |
| # input, weight, bias, args, layer_type = ctx.saved | |
| # | |
| # C_in = input.shape[-1] | |
| # C_out = grad_output.shape[-1] | |
| # | |
| # grad_output_flatten = grad_output.reshape(-1, C_out) | |
| # input_flatten = input.reshape(-1, C_in) | |
| # | |
| # if grad_output_flatten.dtype == input_flatten.dtype: | |
| # grad_weight = grad_output_flatten.t().mm(input_flatten) | |
| # else: | |
| # grad_weight = grad_output_flatten.float().t().mm(input_flatten) | |
| # | |
| # if grad_output_flatten.dtype == weight.dtype: | |
| # grad_input = grad_output_flatten.mm(weight) | |
| # else: | |
| # grad_input = grad_output_flatten.float().mm(weight) | |
| # | |
| # if bias is not None: | |
| # grad_bias = grad_output_flatten.sum(0) | |
| # else: | |
| # grad_bias = None | |
| # | |
| # grad_input_transform = grad_input.reshape(input.size()) | |
| # | |
| # return grad_input_transform, grad_weight, grad_bias, None, None | |
| # B%% = block_cut(%%, args.row_blocksize, args.col_blocksize) | |
| # RQ%%, Q%%, Wscale = block_quant(B%%, args.symm, args.fwbit, stochastic=False, epsilon=args.epsilon) | |
| # Q%% = block_reshape(Q%%, %%, args.row_blocksize, args.col_blocksize) | |
| # RQ%% = block_reshape(RQ%%, %%, args.row_blocksize, args.col_blocksize) | |
| class QuantLinear(Function): | |
| def forward( | |
| ctx, | |
| Qinput, | |
| Iscale, | |
| weight, | |
| bias, | |
| args, | |
| layer_name, | |
| apply_quantize_fw=True, | |
| apply_quantize_fo=True, | |
| apply_quantize_bw=True, | |
| apply_quantize_ba=True, | |
| ): | |
| # shrink Iscale to let the size of gradient the same as forward | |
| ideal_scale_num = Qinput.numel() / (args.min_blockunit_row * args.min_blockunit_col) | |
| actual_scale_num = calculate_scale_num(Qinput, args.row_blocksize_fa, args.col_blocksize_fa) | |
| # actual_scale_num = Qinput.numel() / (args.row_blocksize_fa * args.col_blocksize_fa) | |
| assert Iscale.shape[0] == ideal_scale_num | |
| Iscale = Iscale[: int(actual_scale_num), :, :] | |
| Binput = block_cut(Qinput, args.row_blocksize_fa, args.col_blocksize_fa) | |
| RQinput = Binput * Iscale | |
| RQinput = block_reshape(RQinput, Qinput, args.row_blocksize_fa, args.col_blocksize_fa) | |
| Bweight = block_cut(weight, args.row_blocksize_fw, args.col_blocksize_fw) | |
| RQweight, Qweight, Wscale = block_quant( | |
| Bweight, | |
| args.symm, | |
| args.fwbit, | |
| stochastic=False, | |
| epsilon=args.epsilon, | |
| apply_quantize=apply_quantize_fw, | |
| layer_name=layer_name + "WeightQuant", | |
| ) | |
| Qweight = block_reshape(Qweight, weight, args.row_blocksize_fw, args.col_blocksize_fw) | |
| RQweight = block_reshape(RQweight, weight, args.row_blocksize_fw, args.col_blocksize_fw) | |
| if args.draw_distribution_forward: | |
| save_tensor(weight, Qweight, RQweight, fb="forward", aw="Weight", layer_name=layer_name) | |
| ctx.saved = Qinput, Iscale, Qweight, Wscale, bias, args, layer_name | |
| ctx.apply_quantize = apply_quantize_fw, apply_quantize_fo, apply_quantize_bw, apply_quantize_ba | |
| fc_output = F.linear(RQinput, RQweight, bias) | |
| Bfc_output = block_cut(fc_output, args.row_blocksize_fo, args.col_blocksize_fo) | |
| RQfc_output, Qfc_output, Oscale = block_quant( | |
| Bfc_output, | |
| args.symm, | |
| args.fabit, | |
| stochastic=False, | |
| epsilon=args.epsilon, | |
| apply_quantize=apply_quantize_fo, | |
| layer_name=layer_name + "LinearOutput", | |
| ) | |
| RQfc_output = block_reshape(RQfc_output, fc_output, args.row_blocksize_fo, args.col_blocksize_fo) | |
| Qfc_output = block_reshape(Qfc_output, fc_output, args.row_blocksize_fo, args.col_blocksize_fo) | |
| if args.draw_distribution_forward: | |
| save_tensor(fc_output, Qfc_output, RQfc_output, fb="forward", aw="Output", layer_name=layer_name) | |
| # enlarge Oscale to let the size of gradient the same as forward | |
| ideal_scale_num = Qfc_output.numel() / (args.min_blockunit_row * args.min_blockunit_col) | |
| actual_scale_num = calculate_scale_num(Qfc_output, args.row_blocksize_fo, args.col_blocksize_fo) | |
| # actual_scale_num = Qfc_output.numel() / (args.row_blocksize_fo * args.col_blocksize_fo) | |
| assert Oscale.shape[0] == actual_scale_num | |
| Oscale = torch.nn.functional.pad(Oscale, (0, 0, 0, 0, 0, int(ideal_scale_num - actual_scale_num))) | |
| return Qfc_output, Oscale | |
| def backward(ctx, Qgrad_output, Gscale): | |
| Qinput, Iscale, Qweight, Wscale, bias, args, layer_name = ctx.saved | |
| apply_quantize_fw, apply_quantize_fo, apply_quantize_bw, apply_quantize_ba = ctx.apply_quantize | |
| # shrink Gscale to let the size of gradient the same as forward | |
| ideal_scale_num = Qgrad_output.numel() / (args.min_blockunit_row * args.min_blockunit_col) | |
| actual_scale_num = calculate_scale_num(Qgrad_output, args.row_blocksize_bo, args.col_blocksize_bo) | |
| # actual_scale_num = Qgrad_output.numel() / (args.row_blocksize_bo * args.col_blocksize_bo) | |
| assert Gscale.shape[0] == ideal_scale_num | |
| Gscale = Gscale[: int(actual_scale_num), :, :] | |
| Bgrad_output = block_cut(Qgrad_output, args.row_blocksize_bo, args.col_blocksize_bo) | |
| RQgrad_output = Bgrad_output * Gscale | |
| grad_output = block_reshape(RQgrad_output, Qgrad_output, args.row_blocksize_bo, args.col_blocksize_bo) | |
| if args.draw_distribution_backward: | |
| save_tensor( | |
| grad_output, Qgrad_output, RQgrad_output, fb="backward in", aw="Activation", layer_name=layer_name | |
| ) | |
| C_in = Qinput.shape[-1] | |
| C_out = Qgrad_output.shape[-1] | |
| Binput = block_cut(Qinput, args.row_blocksize_fa, args.col_blocksize_fa) | |
| input = Binput * Iscale | |
| input = block_reshape(input, Qinput, args.row_blocksize_fa, args.col_blocksize_fa) | |
| grad_output_flatten = grad_output.reshape(-1, C_out) | |
| input_flatten = input.reshape(-1, C_in) | |
| if grad_output_flatten.dtype == input_flatten.dtype: | |
| grad_weight = grad_output_flatten.t().mm(input_flatten) | |
| else: | |
| grad_weight = grad_output_flatten.float().t().mm(input_flatten) | |
| Bgrad_weight = block_cut(grad_weight, args.row_blocksize_bw, args.col_blocksize_bw) | |
| RQgrad_weight, Qgrad_weight, GWscale = block_quant( | |
| Bgrad_weight, | |
| args.symm, | |
| args.bwbit, | |
| stochastic=True, | |
| epsilon=args.epsilon, | |
| apply_quantize=apply_quantize_bw, | |
| layer_name=layer_name + "WeightGradient", | |
| ) | |
| Qgrad_weight = block_reshape(Qgrad_weight, grad_weight, args.row_blocksize_bw, args.col_blocksize_bw) | |
| RQgrad_weight = block_reshape(RQgrad_weight, grad_weight, args.row_blocksize_bw, args.col_blocksize_bw) | |
| if args.draw_distribution_backward: | |
| save_tensor(grad_weight, Qgrad_weight, RQgrad_weight, fb="backward", aw="Weight", layer_name=layer_name) | |
| # Calculate Weight Gradient | |
| Bweight = block_cut(Qweight, args.row_blocksize_fw, args.col_blocksize_fw) | |
| weight = Bweight * Wscale | |
| weight = block_reshape(weight, Qweight, args.row_blocksize_fw, args.col_blocksize_fw) | |
| if grad_output_flatten.dtype == Qweight.dtype: | |
| grad_input = grad_output_flatten.mm(weight) | |
| else: | |
| grad_input = grad_output_flatten.float().mm(weight) | |
| Bgrad_input = block_cut(grad_input, args.row_blocksize_ba, args.col_blocksize_ba) | |
| RQgrad_input, Qgrad_input, GIscale = block_quant( | |
| Bgrad_input, | |
| args.symm, | |
| args.babit, | |
| stochastic=True, | |
| epsilon=args.epsilon, | |
| apply_quantize=apply_quantize_ba, | |
| layer_name=layer_name + "ActivationGradient", | |
| ) | |
| Qgrad_input = block_reshape(Qgrad_input, grad_input, args.row_blocksize_ba, args.col_blocksize_ba) | |
| RQgrad_input = block_reshape(RQgrad_input, grad_input, args.row_blocksize_ba, args.col_blocksize_ba) | |
| if args.draw_distribution_backward: | |
| save_tensor( | |
| grad_input, Qgrad_input, RQgrad_input, fb="backward out", aw="Activation out", layer_name=layer_name | |
| ) | |
| # enlarge Qgrad_input to let the size of gradient the same as forward | |
| ideal_scale_num = Qgrad_input.numel() / (args.min_blockunit_row * args.min_blockunit_col) | |
| actual_scale_num = calculate_scale_num(Qgrad_input, args.row_blocksize_ba, args.col_blocksize_ba) | |
| # actual_scale_num = Qgrad_input.numel() / (args.row_blocksize_ba * args.col_blocksize_ba) | |
| assert GIscale.shape[0] == actual_scale_num | |
| GIscale = torch.nn.functional.pad(GIscale, (0, 0, 0, 0, 0, int(ideal_scale_num - actual_scale_num))) | |
| Qgrad_input_transform = Qgrad_input.reshape(Qinput.size()) | |
| if bias is not None: | |
| grad_bias = grad_output_flatten.sum(0) | |
| else: | |
| grad_bias = None | |
| return Qgrad_input_transform, GIscale, RQgrad_weight, grad_bias, None, None, None, None, None, None | |