import numpy as np
import time
import torch
import torch.nn as nn


def move_data_to_device(x, device):
    if 'float' in str(x.dtype):
        x = torch.Tensor(x)
    elif 'int' in str(x.dtype):
        x = torch.LongTensor(x)
    else:
        return x

    return x.to(device)


def do_mixup(x, mixup_lambda):
    """Mixup x of even indexes (0, 2, 4, ...) with x of odd indexes 
    (1, 3, 5, ...).
    Args:
      x: (batch_size * 2, ...)
      mixup_lambda: (batch_size * 2,)
    Returns:
      out: (batch_size, ...)
    """
    out = (x[0 :: 2].transpose(0, -1) * mixup_lambda[0 :: 2] + \
        x[1 :: 2].transpose(0, -1) * mixup_lambda[1 :: 2]).transpose(0, -1)
    return out
    

def append_to_dict(dict, key, value):
    if key in dict.keys():
        dict[key].append(value)
    else:
        dict[key] = [value]


def interpolate(x, ratio):
    """Interpolate data in time domain. This is used to compensate the 
    resolution reduction in downsampling of a CNN.
    
    Args:
      x: (batch_size, time_steps, classes_num)
      ratio: int, ratio to interpolate
    Returns:
      upsampled: (batch_size, time_steps * ratio, classes_num)
    """
    (batch_size, time_steps, classes_num) = x.shape
    upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
    upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
    return upsampled


def pad_framewise_output(framewise_output, frames_num):
    """Pad framewise_output to the same length as input frames. The pad value 
    is the same as the value of the last frame.
    Args:
      framewise_output: (batch_size, frames_num, classes_num)
      frames_num: int, number of frames to pad
    Outputs:
      output: (batch_size, frames_num, classes_num)
    """
    pad = framewise_output[:, -1 :, :].repeat(1, frames_num - framewise_output.shape[1], 1)
    """tensor for padding"""

    output = torch.cat((framewise_output, pad), dim=1)
    """(batch_size, frames_num, classes_num)"""

    return output


def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


def count_flops(model, audio_length):
    """Count flops. Code modified from others' implementation.
    """
    multiply_adds = True
    list_conv2d=[]
    def conv2d_hook(self, input, output):
        batch_size, input_channels, input_height, input_width = input[0].size()
        output_channels, output_height, output_width = output[0].size()
 
        kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups) * (2 if multiply_adds else 1)
        bias_ops = 1 if self.bias is not None else 0
 
        params = output_channels * (kernel_ops + bias_ops)
        flops = batch_size * params * output_height * output_width
 
        list_conv2d.append(flops)

    list_conv1d=[]
    def conv1d_hook(self, input, output):
        batch_size, input_channels, input_length = input[0].size()
        output_channels, output_length = output[0].size()
 
        kernel_ops = self.kernel_size[0] * (self.in_channels / self.groups) * (2 if multiply_adds else 1)
        bias_ops = 1 if self.bias is not None else 0
 
        params = output_channels * (kernel_ops + bias_ops)
        flops = batch_size * params * output_length
 
        list_conv1d.append(flops)
 
    list_linear=[] 
    def linear_hook(self, input, output):
        batch_size = input[0].size(0) if input[0].dim() == 2 else 1
 
        weight_ops = self.weight.nelement() * (2 if multiply_adds else 1)
        bias_ops = self.bias.nelement()
 
        flops = batch_size * (weight_ops + bias_ops)
        list_linear.append(flops)
 
    list_bn=[] 
    def bn_hook(self, input, output):
        list_bn.append(input[0].nelement() * 2)
 
    list_relu=[] 
    def relu_hook(self, input, output):
        list_relu.append(input[0].nelement() * 2)
 
    list_pooling2d=[]
    def pooling2d_hook(self, input, output):
        batch_size, input_channels, input_height, input_width = input[0].size()
        output_channels, output_height, output_width = output[0].size()
 
        kernel_ops = self.kernel_size * self.kernel_size
        bias_ops = 0
        params = output_channels * (kernel_ops + bias_ops)
        flops = batch_size * params * output_height * output_width
 
        list_pooling2d.append(flops)

    list_pooling1d=[]
    def pooling1d_hook(self, input, output):
        batch_size, input_channels, input_length = input[0].size()
        output_channels, output_length = output[0].size()
 
        kernel_ops = self.kernel_size[0]
        bias_ops = 0
        
        params = output_channels * (kernel_ops + bias_ops)
        flops = batch_size * params * output_length
 
        list_pooling2d.append(flops)
 
    def foo(net):
        childrens = list(net.children())
        if not childrens:
            if isinstance(net, nn.Conv2d):
                net.register_forward_hook(conv2d_hook)
            elif isinstance(net, nn.Conv1d):
                net.register_forward_hook(conv1d_hook)
            elif isinstance(net, nn.Linear):
                net.register_forward_hook(linear_hook)
            elif isinstance(net, nn.BatchNorm2d) or isinstance(net, nn.BatchNorm1d):
                net.register_forward_hook(bn_hook)
            elif isinstance(net, nn.ReLU):
                net.register_forward_hook(relu_hook)
            elif isinstance(net, nn.AvgPool2d) or isinstance(net, nn.MaxPool2d):
                net.register_forward_hook(pooling2d_hook)
            elif isinstance(net, nn.AvgPool1d) or isinstance(net, nn.MaxPool1d):
                net.register_forward_hook(pooling1d_hook)
            else:
                print('Warning: flop of module {} is not counted!'.format(net))
            return
        for c in childrens:
            foo(c)

    # Register hook
    foo(model)
    
    device = device = next(model.parameters()).device
    input = torch.rand(1, audio_length).to(device)

    out = model(input)
 
    total_flops = sum(list_conv2d) + sum(list_conv1d) + sum(list_linear) + \
        sum(list_bn) + sum(list_relu) + sum(list_pooling2d) + sum(list_pooling1d)
    
    return total_flops