Spaces:
Runtime error
Runtime error
File size: 22,277 Bytes
a344f64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
import warnings
warnings.filterwarnings("ignore")
import random
import torchaudio
# from torch._six import string_classes
import collections
import re
import numpy as np
from transformers import AutoTokenizer, logging
try:
from models.clap import CLAP
from models.mapper import get_clapcap
except:
from .models.clap import CLAP
from .models.mapper import get_clapcap
import math
import torchaudio.transforms as T
import os
import torch
from importlib_resources import files
import argparse
import yaml
import sys
logging.set_verbosity_error()
class CLAPWrapper():
"""
A class for interfacing CLAP model.
"""
def __init__(self, model_fp, config_root, version, use_cuda=False):
self.supported_versions = ['2022', '2023', 'clapcap']
self.np_str_obj_array_pattern = re.compile(r'[SaUO]')
self.file_path = os.path.realpath(__file__)
self.default_collate_err_msg_format = (
"default_collate: batch must contain tensors, numpy arrays, numbers, "
"dicts or lists; found {}")
self.config_root = config_root
self.config_as_str = self.get_config_path(version)
self.model_fp = model_fp
self.use_cuda = use_cuda
self.version = version
if 'clapcap' in self.version:
self.clapcap, self.tokenizer, self.args = self.load_clapcap()
else:
self.clap, self.tokenizer, self.args = self.load_clap()
def get_config_path(self, version):
if version in self.supported_versions:
# config_root = /home/zkong/audio_flamingo/audio_flamingo_v1/microsoft_clap/src/configs
return f"{self.config_root}/config_{version}.yml"
else:
raise ValueError(f"The specific version is not supported. The supported versions are {str(self.supported_versions)}")
def read_config_as_args(self,config_path,args=None,is_config_str=False):
return_dict = {}
if config_path is not None:
if is_config_str:
yml_config = yaml.load(config_path, Loader=yaml.FullLoader)
else:
with open(config_path, "r") as f:
yml_config = yaml.load(f, Loader=yaml.FullLoader)
if args != None:
for k, v in yml_config.items():
if k in args.__dict__:
args.__dict__[k] = v
else:
sys.stderr.write("Ignored unknown parameter {} in yaml.\n".format(k))
else:
for k, v in yml_config.items():
return_dict[k] = v
args = args if args != None else return_dict
return argparse.Namespace(**args)
def load_clap(self):
r"""Load CLAP model with args from config file"""
args = self.read_config_as_args(self.config_as_str, is_config_str=False)
if 'roberta' in args.text_model or 'clip' in args.text_model or 'gpt' in args.text_model:
self.token_keys = ['input_ids', 'attention_mask']
elif 'bert' in args.text_model:
self.token_keys = ['input_ids', 'token_type_ids', 'attention_mask']
clap = CLAP(
audioenc_name=args.audioenc_name,
sample_rate=args.sampling_rate,
window_size=args.window_size,
hop_size=args.hop_size,
mel_bins=args.mel_bins,
fmin=args.fmin,
fmax=args.fmax,
classes_num=args.num_classes,
out_emb=args.out_emb,
text_model=args.text_model,
transformer_embed_dim=args.transformer_embed_dim,
d_proj=args.d_proj
)
# Load pretrained weights for model
model_state_dict = torch.load(self.model_fp, map_location=torch.device('cpu'))['model']
# We unwrap the DDP model and save. If the model is not unwrapped and saved, then the model needs to unwrapped before `load_state_dict`:
# Reference link: https://discuss.pytorch.org/t/how-to-load-dataparallel-model-which-trained-using-multiple-gpus/146005
clap.load_state_dict(model_state_dict)
clap.eval() # set clap in eval mode
tokenizer = AutoTokenizer.from_pretrained(args.text_model)
if 'gpt' in args.text_model:
tokenizer.add_special_tokens({'pad_token': '!'})
if self.use_cuda and torch.cuda.is_available():
clap = clap.cuda()
return clap, tokenizer, args
def load_clapcap(self):
r"""Load CLAP model with args from config file"""
args = self.read_config_as_args(self.config_as_str, is_config_str=False)
args.prefix_dim = args.d_proj
text_model = args.text_model
args.text_model = args.text_decoder
args.cross_attention = True if 'cross' in args.clapcap_model.lower() else False
if 'roberta' in args.text_model or 'clip' in args.text_model or 'gpt' in args.text_model:
self.token_keys = ['input_ids', 'attention_mask']
elif 'bert' in args.text_model:
self.token_keys = ['input_ids', 'token_type_ids', 'attention_mask']
clap = CLAP(
audioenc_name=args.audioenc_name,
sample_rate=args.sampling_rate,
window_size=args.window_size,
hop_size=args.hop_size,
mel_bins=args.mel_bins,
fmin=args.fmin,
fmax=args.fmax,
classes_num=args.num_classes,
out_emb=args.out_emb,
text_model=text_model,
transformer_embed_dim=args.transformer_embed_dim,
d_proj=args.d_proj
)
clapcap = get_clapcap(args.clapcap_model)(clap, args.text_decoder, args.prefix_length, args.prefix_length_clip, args.prefix_dim,
args.num_layers, args.normalize_prefix, args.mapping_type, True, True)
model_state_dict = torch.load(self.model_fp, map_location=torch.device('cpu'))['model']
clapcap.load_state_dict(model_state_dict)
clapcap.eval() # set clap in eval mode
tokenizer = AutoTokenizer.from_pretrained(args.text_model)
if 'gpt' in args.text_model:
tokenizer.add_special_tokens({'pad_token': '!'})
if self.use_cuda and torch.cuda.is_available():
clapcap = clapcap.cuda()
return clapcap, tokenizer, args
def default_collate(self, batch):
r"""Puts each data field into a tensor with outer dimension batch size"""
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.Tensor):
out = None
if torch.utils.data.get_worker_info() is not None:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = elem.storage()._new_shared(numel)
out = elem.new(storage)
return torch.stack(batch, 0, out=out)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
# array of string classes and object
if self.np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(
self.default_collate_err_msg_format.format(elem.dtype))
return self.default_collate([torch.as_tensor(b) for b in batch])
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(elem, int):
return torch.tensor(batch)
# elif isinstance(elem, string_classes):
# return batch
elif isinstance(elem, collections.abc.Mapping):
return {key: self.default_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
return elem_type(*(self.default_collate(samples) for samples in zip(*batch)))
elif isinstance(elem, collections.abc.Sequence):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if not all(len(elem) == elem_size for elem in it):
raise RuntimeError(
'each element in list of batch should be of equal size')
transposed = zip(*batch)
return [self.default_collate(samples) for samples in transposed]
raise TypeError(self.default_collate_err_msg_format.format(elem_type))
def read_audio(self, audio_path, resample=False):
r"""Loads audio file or array and returns a torch tensor"""
# Randomly sample a segment of audio_duration from the clip or pad to match duration
audio_time_series, sample_rate = torchaudio.load(audio_path)
resample_rate = self.args.sampling_rate
if resample:
resampler = T.Resample(sample_rate, resample_rate)
audio_time_series = resampler(audio_time_series)
return audio_time_series, sample_rate
def load_audio_into_tensor(self, audio_path, audio_duration, resample=False):
r"""Loads audio file and returns raw audio."""
# Randomly sample a segment of audio_duration from the clip or pad to match duration
audio_time_series, sample_rate = self.read_audio(audio_path, resample=False)
audio_time_series = audio_time_series.reshape(-1)
# audio_time_series is shorter than predefined audio duration,
# so audio_time_series is extended
if audio_duration*sample_rate >= audio_time_series.shape[0]:
repeat_factor = int(np.ceil((audio_duration*sample_rate) /
audio_time_series.shape[0]))
# Repeat audio_time_series by repeat_factor to match audio_duration
audio_time_series = audio_time_series.repeat(repeat_factor)
# remove excess part of audio_time_series
audio_time_series = audio_time_series[0:audio_duration*sample_rate]
else:
# audio_time_series is longer than predefined audio duration,
# so audio_time_series is trimmed
start_index = random.randrange(
audio_time_series.shape[0] - audio_duration*sample_rate)
audio_time_series = audio_time_series[start_index:start_index +
audio_duration*sample_rate]
return torch.FloatTensor(audio_time_series)
# modified by Kong
def load_audio_clip_into_tensor(self, audio_clip, audio_duration, resample=False):
r"""Loads audio clip and returns raw audio."""
# Randomly sample a segment of audio_duration from the clip or pad to match duration
sample_rate = 44100
audio_time_series = audio_clip.reshape(-1)
# audio_time_series is shorter than predefined audio duration,
# so audio_time_series is extended
assert audio_duration * sample_rate >= audio_time_series.shape[0], \
'dur * sr = {} should be larger than len = {}'.format(audio_duration * sample_rate, audio_time_series.shape[0])
repeat_factor = int(np.ceil((audio_duration*sample_rate) /
audio_time_series.shape[0]))
# Repeat audio_time_series by repeat_factor to match audio_duration
audio_time_series = audio_time_series.repeat(repeat_factor)
# remove excess part of audio_time_series
audio_time_series = audio_time_series[0:audio_duration*sample_rate]
# return torch.FloatTensor(audio_time_series)
return audio_time_series # already on cuda device
def preprocess_audio(self, audio_files, resample):
r"""Load list of audio files and return raw audio"""
audio_tensors = []
for audio_file in audio_files:
audio_tensor = self.load_audio_into_tensor(
audio_file, self.args.duration, resample)
audio_tensor = audio_tensor.reshape(
1, -1).cuda() if self.use_cuda and torch.cuda.is_available() else audio_tensor.reshape(1, -1)
audio_tensors.append(audio_tensor)
return self.default_collate(audio_tensors)
# modified by Kong
def preprocess_audio_clips(self, audio_clips, resample=False):
r"""Load list of audio clips and return raw audio"""
audio_tensors = []
for audio_clip in audio_clips:
audio_tensor = self.load_audio_clip_into_tensor(
audio_clip, self.args.duration, resample=False)
audio_tensor = audio_tensor.reshape(
1, -1).cuda() if self.use_cuda and torch.cuda.is_available() else audio_tensor.reshape(1, -1)
audio_tensors.append(audio_tensor)
return self.default_collate(audio_tensors)
def preprocess_text(self, text_queries):
r"""Load list of class labels and return tokenized text"""
tokenized_texts = []
for ttext in text_queries:
if 'gpt' in self.args.text_model:
ttext = ttext + ' <|endoftext|>'
tok = self.tokenizer.encode_plus(
text=ttext, add_special_tokens=True, max_length=self.args.text_len, padding='max_length', return_tensors="pt")
for key in self.token_keys:
tok[key] = tok[key].reshape(-1).cuda() if self.use_cuda and torch.cuda.is_available() else tok[key].reshape(-1)
tokenized_texts.append(tok)
return self.default_collate(tokenized_texts)
def get_text_embeddings(self, class_labels):
r"""Load list of class labels and return text embeddings"""
preprocessed_text = self.preprocess_text(class_labels)
return self._get_text_embeddings(preprocessed_text)
def get_audio_embeddings(self, audio_files, resample):
r"""Load list of audio files and return a audio embeddings"""
preprocessed_audio = self.preprocess_audio(audio_files, resample)
return self._get_audio_embeddings(preprocessed_audio)
# modified by Kong
def get_audio_embeddings_from_clips(self, audio_clips, resample=False):
r"""Load list of audio files and return a audio embeddings"""
preprocessed_audio = self.preprocess_audio_clips(audio_clips, resample)
return self._get_audio_embeddings(preprocessed_audio)
def _get_text_embeddings(self, preprocessed_text):
r"""Load preprocessed text and return text embeddings"""
with torch.no_grad():
return self.clap.caption_encoder(preprocessed_text)
# modified by Kong
def _get_audio_embeddings(self, preprocessed_audio):
r"""Load preprocessed audio and return a audio embeddings"""
with torch.no_grad():
preprocessed_audio = preprocessed_audio.reshape(
preprocessed_audio.shape[0], preprocessed_audio.shape[2])
#Append [0] the audio emebdding, [1] has output class probabilities
if 'clapcap' in self.version:
return self.clapcap.clap(preprocessed_audio)[0]
else:
return self.clap.audio_encoder(preprocessed_audio)[0]
def _generic_batch_inference(self, func, *args):
r"""Process audio and/or text per batch"""
input_tmp = args[0]
batch_size = args[-1]
# args[0] has audio_files, args[1] has class_labels
inputs = [args[0], args[1]] if len(args) == 3 else [args[0]]
args0_len = len(args[0])
# compute text_embeddings once for all the audio_files batches
if len(inputs) == 2:
text_embeddings = self.get_text_embeddings(args[1])
inputs = [args[0], args[1], text_embeddings]
dataset_idx = 0
for _ in range(math.ceil(args0_len/batch_size)):
next_batch_idx = dataset_idx + batch_size
# batch size is bigger than available audio/text items
if next_batch_idx >= args0_len:
inputs[0] = input_tmp[dataset_idx:]
return func(*tuple(inputs))
else:
inputs[0] = input_tmp[dataset_idx:next_batch_idx]
yield func(*tuple(inputs))
dataset_idx = next_batch_idx
def get_audio_embeddings_per_batch(self, audio_files, batch_size):
r"""Load preprocessed audio and return a audio embeddings per batch"""
return self._generic_batch_inference(self.get_audio_embeddings, audio_files, batch_size)
def get_text_embeddings_per_batch(self, class_labels, batch_size):
r"""Load preprocessed text and return text embeddings per batch"""
return self._generic_batch_inference(self.get_text_embeddings, class_labels, batch_size)
def compute_similarity(self, audio_embeddings, text_embeddings):
r"""Compute similarity between text and audio embeddings"""
audio_embeddings = audio_embeddings/torch.norm(audio_embeddings, dim=-1, keepdim=True)
text_embeddings = text_embeddings/torch.norm(text_embeddings, dim=-1, keepdim=True)
logit_scale = self.clap.logit_scale.exp()
similarity = logit_scale*text_embeddings @ audio_embeddings.T
return similarity.T
def classify_audio_files_per_batch(self, audio_files, class_labels, batch_size):
r"""Compute classification probabilities for each audio recording in a batch and each class label"""
return self._generic_batch_inference(self.classify_audio_files, audio_files, class_labels, batch_size)
def generate_caption(self, audio_files, resample=True, beam_size: int = 5, entry_length=67, temperature=1.):
r"""Generate audio captions for each audio recording in a batch"""
captions = []
audio_tensors = self.preprocess_audio(audio_files, resample)
with torch.no_grad():
prefix = self.clapcap.clap(audio_tensors.squeeze(1))[0]
if self.args.normalize_prefix:
prefix = prefix / prefix.norm(2, -1).reshape(-1,1)
prefix_embed = self.clapcap.clap_project(prefix).view(-1, self.args.prefix_length, self.clapcap.gpt.transformer.wte.weight.shape[1])
for i in range(len(audio_tensors)):
gen_caption = self._generate_beam(embed=prefix_embed[i].unsqueeze(0),\
beam_size=beam_size,\
entry_length=entry_length,\
temperature=temperature)[0]
captions.append(gen_caption.capitalize())
return captions
def _generate_beam(self, beam_size: int = 5, prompt=None, embed=None,
entry_length=67, temperature=1., stop_token: str = ' <|endoftext|>'):
r"""Generate captions by beam search decoding"""
self.clapcap.eval()
stop_token_index = self.tokenizer.encode(stop_token)[0]
tokens = None
scores = None
device = next(self.clapcap.parameters()).device
seq_lengths = torch.ones(beam_size, device=device)
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
with torch.no_grad():
if embed is not None:
generated = embed
else:
if tokens is None:
tokens = torch.tensor(self.tokenizer.encode(prompt))
tokens = tokens.unsqueeze(0).to(device)
generated = self.clapcap.gpt.transformer.wte(tokens)
for i in range(entry_length):
outputs = self.clapcap.gpt(inputs_embeds=generated)
logits = outputs.logits
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
logits = logits.softmax(-1).log()
if scores is None:
scores, next_tokens = logits.topk(beam_size, -1)
generated = generated.expand(beam_size, *generated.shape[1:])
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
if tokens is None:
tokens = next_tokens
else:
tokens = tokens.expand(beam_size, *tokens.shape[1:])
tokens = torch.cat((tokens, next_tokens), dim=1)
else:
logits[is_stopped] = -float(np.inf)
logits[is_stopped, 0] = 0
scores_sum = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
scores_sum_average = scores_sum / seq_lengths[:, None]
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1)
next_tokens_source = next_tokens // scores_sum.shape[1]
seq_lengths = seq_lengths[next_tokens_source]
next_tokens = next_tokens % scores_sum.shape[1]
next_tokens = next_tokens.unsqueeze(1)
tokens = tokens[next_tokens_source]
tokens = torch.cat((tokens, next_tokens), dim=1)
generated = generated[next_tokens_source]
scores = scores_sum_average * seq_lengths
is_stopped = is_stopped[next_tokens_source]
next_token_embed = self.clapcap.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1)
generated = torch.cat((generated, next_token_embed), dim=1)
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
if is_stopped.all():
break
scores = scores / seq_lengths
output_list = tokens.cpu().numpy()
output_texts = [self.tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)]
order = scores.argsort(descending=True)
output_texts = [output_texts[i] for i in order]
return output_texts |