File size: 9,021 Bytes
a344f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import argparse
import functools
import glob
import os
import random
import string
import json
import sys 
sys.path.append('../')
from tqdm import tqdm
import yaml
from collections import defaultdict
import io
import warnings
import subprocess
import pickle

import numpy as np
import torch

from data.data import get_audiotext_dataloader
from src.factory import create_model_and_transforms
from train.train_utils import Dict2Class, get_autocast, get_cast_dtype

def inference_this(
    args, data_config, clap_config, model_config, test_dataset_name, tmp_file,
    temperature=1.0, num_beams=3, ckpt=-1, end_batch_idx=-2, verbose=False,
):
    os.environ["TOKENIZERS_PARALLELISM"] = "false"  # disable the tokenizer parallelism warning
    model, tokenizer = create_model_and_transforms(
        **model_config,
        clap_config=clap_config, 
        use_local_files=args.offline,
        gradient_checkpointing=args.gradient_checkpointing,
        freeze_lm_embeddings=args.freeze_lm_embeddings,
    )

    device_id = 0
    model = model.to(device_id)
    model.eval()

    if ckpt == -1:
        checkpoint_list = glob.glob(f"{args.expdir}/{args.run_name}/checkpoint_*.pt")
        resume_from_checkpoint = sorted(checkpoint_list, key=lambda x: int(x.split("_")[-1].split(".")[0]))[-1]
    else:
        resume_from_checkpoint = f"{args.expdir}/{args.run_name}/checkpoint_{ckpt}.pt"
    checkpoint = torch.load(resume_from_checkpoint, map_location="cpu")
    msd = checkpoint["model_state_dict"]
    msd = {k.replace("module.", ""): v for k, v in msd.items()}
    x,y = model.load_state_dict(msd, False)
    print(x)
    print(y)
    
    autocast = get_autocast(
        args.precision, cache_enabled=(not args.fsdp)
    )
    cast_dtype = get_cast_dtype(args.precision)

    # model = model.to(dtype=cast_dtype)

    if test_dataset_name in data_config["valid_dataset_config"]:
        data_config["valid_dataset_config"] = {test_dataset_name: data_config["valid_dataset_config"][test_dataset_name]}
    else:
        data_config["valid_dataset_config"] = {test_dataset_name: True}
    
    all_test_AudioTextDataInfo = get_audiotext_dataloader(data_config, clap_config, tokenizer, args.batch_size, split='test')
    
    assert test_dataset_name in list(all_test_AudioTextDataInfo.keys()), "{} not a test set".format(test_dataset_name)
    dataloader = all_test_AudioTextDataInfo[test_dataset_name].dataloader

    deduplicate_tasks = ["Clotho-v2-AudioCaptioning", "audiocaps-AudioCaptioning", "MACS-AudioCaptioning", "LP-MusicCaps-MSD-AudioCaptioning", "LP-MusicCaps-MC-AudioCaptioning"]
    if any([test_dataset_name.startswith(x) for x in deduplicate_tasks]):
        deduplicate = True 
    else:
        deduplicate = False

    if os.path.exists(tmp_file):
        with open(tmp_file, 'rb') as pickle_file:
            tmp_data = pickle.load(pickle_file)
        results_dic = tmp_data['results_dic']
        results = tmp_data['results']
        finished_batches = tmp_data['finished_batches']
        print('reading tmp data from {}: {} batches already computed'.format(tmp_file, finished_batches+1))
    
    else:
        tmp_data = {}
        results_dic = {}  # for deduplicate
        results = []  # for non-deduplicate
        finished_batches = -1
        print('no tmp data found; will store tmp data to {}'.format(tmp_file))

    # print(len(dataloader))
    # print('---------------------')
    from itertools import islice
    for batch_idx, batch in tqdm(enumerate(islice(dataloader, finished_batches, None), start=finished_batches)):
    # for batch_idx, batch in tqdm(enumerate(dataloader)):
        if end_batch_idx > 0 and batch_idx == end_batch_idx:
            break
        
        if batch_idx <= finished_batches:
            continue

        audio_clips = batch["audio_clips"].to(device_id, dtype=cast_dtype, non_blocking=True)
        audio_embed_mask = batch["audio_embed_mask"].to(device_id, dtype=cast_dtype, non_blocking=True)
        input_ids = batch["input_ids"].to(device_id, non_blocking=True)
        filenames = batch["filenames"]
        # print(input_ids)

        media_token_id = tokenizer.encode("<audio>")[-1]
        sep_token_id = tokenizer.sep_token_id

        for idx in range(input_ids.shape[0]):
            filename = filenames[idx]
            if type(filename) is list:
                # interleaved data
                filename = filename[-1]

            input_id = input_ids[idx]
            for sep_location in range(len(input_id)-1, -1, -1):
                # find last <SEP>
                if input_id[sep_location] == sep_token_id:
                    break
            # print(tokenizer.decode(input_id))
            prompt = input_id[:sep_location+1]

            prompt_decoded = tokenizer.decode(prompt).replace(tokenizer.sep_token, '')
            ground_truth_decoded = tokenizer.decode(input_id).split(tokenizer.sep_token)[-1].replace(tokenizer.eos_token, '').replace(tokenizer.pad_token, '').replace('<|endofchunk|>', '')
            
            if not (deduplicate and (filename, prompt_decoded) in results_dic):
                # print(prompt)
                # print(prompt_decoded)
                output = model.generate(
                    audio_x=audio_clips[idx].unsqueeze(0),
                    audio_x_mask=audio_embed_mask[idx].unsqueeze(0),
                    lang_x=prompt.unsqueeze(0),
                    eos_token_id=tokenizer.eos_token_id,
                    max_new_tokens=256,
                    temperature=temperature,
                )[0]
                output_decoded = tokenizer.decode(output).split(tokenizer.sep_token)[-1].replace(tokenizer.eos_token, '').replace(tokenizer.pad_token, '').replace('<|endofchunk|>', '')
                # print(ground_truth_decoded)
                # print('------')
                # print(output_decoded)

            if deduplicate:
                if (filename, prompt_decoded) in results_dic:
                    results_dic[(filename, prompt_decoded)]['ground_truth'].append(ground_truth_decoded)
            
                else:
                    results_dic[(filename, prompt_decoded)] = {
                        'ground_truth': [ground_truth_decoded], 
                        'output': output_decoded
                    }
            else:
                results.append((filename, prompt_decoded, ground_truth_decoded, output_decoded))
                

        tmp_data['results_dic'] = results_dic
        tmp_data['results'] = results
        tmp_data['finished_batches'] = batch_idx
        with open(tmp_file, 'wb') as pickle_file:
            pickle.dump(tmp_data, pickle_file)

    if deduplicate:
        for (filename, prompt) in results_dic:
            ground_truth = '|'.join(results_dic[(filename, prompt)]['ground_truth'])
            output = results_dic[(filename, prompt)]['output']
            results.append((filename, prompt, ground_truth, output))

    # if verbose:
    #     for filename, prompt, ground_truth, output in results:
    #         print('-'*30)
    #         print('filename:', filename)
    #         print('prompt:', prompt)
    #         print('ground_truth:', ground_truth)
    #         print('output:', output)

    return results


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-c', '--config', type=str, default='../config/config.yaml', help='yaml config path')
    parser.add_argument('-t', '--task', type=str, help='which task to inference')
    parser.add_argument('-temp', '--temperature', type=float, default=1.0, help='temperature')
    parser.add_argument('-nb', '--num_beams', type=int, default=1, help='num beams for beam search')
    parser.add_argument('--ckpt', type=int, default=-1, help='checkpoint idx, -1 means latest')
    parsed_args = parser.parse_args()

    print(parsed_args)

    test_dataset_name = parsed_args.task

    output_file = os.path.join(
        '../outputs/', 
        parsed_args.task.replace('/', '-'), 
        '{}-ckpt{}-{}.log'.format(
            parsed_args.config.split('/')[-1][:-5], 
            parsed_args.ckpt,
            "sft"
        )
    )
    tmp_file = output_file.replace('.log', '.tmp.pickle')
    print('output file:', output_file)

    print('no previous log file; generating samples')

    config = yaml.load(open(parsed_args.config), Loader=yaml.FullLoader)
    # print(config)
    # print('----------------------')
    data_config = config['data_config']
    model_config = config['model_config']
    print(model_config)
    clap_config = config['clap_config']
    clap_config = config['clap_config']
    mert_config = config['mert_config']
    args = Dict2Class(config['train_config'])

    results = inference_this(
        args, data_config, clap_config, model_config, test_dataset_name, 
        temperature=float(parsed_args.temperature),
        num_beams=int(parsed_args.num_beams),
        ckpt=parsed_args.ckpt,
        verbose=True,
        tmp_file=tmp_file,
    )

if __name__ == "__main__":
    main()