Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # Copyright (C) 2025 NVIDIA Corporation. All rights reserved. | |
| # | |
| # This work is licensed under the LICENSE file | |
| # located at the root directory. | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| from diffusers.pipelines.flux.pipeline_flux import FluxPipeline, calculate_shift, retrieve_timesteps | |
| from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
| from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
| from diffusers.utils.torch_utils import randn_tensor | |
| import matplotlib.pyplot as plt | |
| import torch.fft | |
| import torch.nn.functional as F | |
| from diffusers.models.attention_processor import FluxAttnProcessor2_0, FluxSingleAttnProcessor2_0 | |
| from addit_attention_processors import AdditFluxAttnProcessor2_0, AdditFluxSingleAttnProcessor2_0 | |
| from addit_attention_store import AttentionStore | |
| from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation | |
| from skimage import filters | |
| from visualization_utils import show_image_and_heatmap, show_images, draw_points_on_pil_image, draw_bboxes_on_image | |
| from addit_blending_utils import clipseg_predict, grounding_sam_predict, mask_to_box_sam_predict, \ | |
| mask_to_mask_sam_predict, attention_to_points_sam_predict | |
| from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection | |
| from sam2.sam2_image_predictor import SAM2ImagePredictor | |
| from scipy.optimize import brentq | |
| from scipy.optimize import root_scalar | |
| def register_my_attention_processors(transformer, attention_store, extended_steps_multi, extended_steps_single): | |
| attn_procs = {} | |
| for i, (name, processor) in enumerate(transformer.attn_processors.items()): | |
| layer_name = ".".join(name.split(".")[:2]) | |
| if layer_name.startswith("transformer_blocks"): | |
| attn_procs[name] = AdditFluxAttnProcessor2_0(layer_name=layer_name, | |
| attention_store=attention_store, | |
| extended_steps=extended_steps_multi) | |
| elif layer_name.startswith("single_transformer_blocks"): | |
| attn_procs[name] = AdditFluxSingleAttnProcessor2_0(layer_name=layer_name, | |
| attention_store=attention_store, | |
| extended_steps=extended_steps_single) | |
| transformer.set_attn_processor(attn_procs) | |
| def register_regular_attention_processors(transformer): | |
| attn_procs = {} | |
| for i, (name, processor) in enumerate(transformer.attn_processors.items()): | |
| layer_name = ".".join(name.split(".")[:2]) | |
| if layer_name.startswith("transformer_blocks"): | |
| attn_procs[name] = FluxAttnProcessor2_0() | |
| elif layer_name.startswith("single_transformer_blocks"): | |
| attn_procs[name] = FluxSingleAttnProcessor2_0() | |
| transformer.set_attn_processor(attn_procs) | |
| def img2img_retrieve_latents( | |
| encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| class AdditFluxPipeline(FluxPipeline): | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| height = 2 * (int(height) // self.vae_scale_factor) | |
| width = 2 * (int(width) // self.vae_scale_factor) | |
| shape = (batch_size, num_channels_latents, height, width) | |
| if latents is not None: | |
| latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) | |
| return latents.to(device=device, dtype=dtype), latent_image_ids | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if isinstance(generator, list): | |
| latents = torch.empty(shape, device=device, dtype=dtype) | |
| latents_list = [randn_tensor(shape, generator=g, device=device, dtype=dtype) for g in generator] | |
| for i, l_i in enumerate(latents_list): | |
| latents[i] = l_i[i] | |
| else: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | |
| latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) | |
| return latents, latent_image_ids | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| timesteps: List[int] = None, | |
| guidance_scale: Union[float, List[float]] = 7.0, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| seed: Optional[Union[int, List[int]]] = None, | |
| same_latent_for_all_prompts: bool = False, | |
| # Extended Attention | |
| extended_steps_multi: Optional[int] = -1, | |
| extended_steps_single: Optional[int] = -1, | |
| extended_scale: Optional[Union[float, str]] = 1.0, | |
| # Structure Transfer | |
| source_latents: Optional[torch.FloatTensor] = None, | |
| structure_transfer_step: int = 5, | |
| # Latent Blending | |
| subject_token: Optional[str] = None, | |
| localization_model: Optional[str] = "attention_points_sam", | |
| blend_steps: List[int] = [], | |
| show_attention: bool = False, | |
| # Real Image Source | |
| is_img_src: bool = False, | |
| use_offset: bool = False, | |
| img_src_latents: Optional[List[torch.FloatTensor]] = None, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| will be used instead | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 7.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
| Examples: | |
| Returns: | |
| [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
| is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
| images. | |
| """ | |
| device = self._execution_device | |
| # Blend Steps | |
| blend_models = {} | |
| if len(blend_steps) > 0: | |
| if localization_model == "clipseg": | |
| blend_models["clipseg_processor"] = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") | |
| blend_models["clipseg_model"] = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device) | |
| elif localization_model == "grounding_sam": | |
| grounding_dino_model_id = "IDEA-Research/grounding-dino-base" | |
| blend_models["grounding_processor"] = AutoProcessor.from_pretrained(grounding_dino_model_id) | |
| blend_models["grounding_model"] = AutoModelForZeroShotObjectDetection.from_pretrained(grounding_dino_model_id).to(device) | |
| blend_models["sam_predictor"] = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large") | |
| elif localization_model == "clipseg_sam": | |
| blend_models["clipseg_processor"] = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") | |
| blend_models["clipseg_model"] = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device) | |
| blend_models["sam_predictor"] = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large") | |
| elif localization_model == "attention": | |
| pass | |
| elif localization_model in ["attention_box_sam", "attention_mask_sam", "attention_points_sam"]: | |
| blend_models["sam_predictor"] = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large") | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 4. Prepare latent variables | |
| if (generator is None) and seed is not None: | |
| if isinstance(seed, int): | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| else: | |
| assert len(seed) == batch_size, "The number of seeds must match the batch size" | |
| generator = [torch.Generator(device=device).manual_seed(s) for s in seed] | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, latent_image_ids = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if same_latent_for_all_prompts: | |
| latents = latents[:1].repeat(batch_size * num_images_per_prompt, 1, 1) | |
| noise = latents.clone() | |
| attention_store_kwargs = {} | |
| if extended_scale == "auto": | |
| is_auto_extend_scale = True | |
| extended_scale = 1.05 | |
| attention_store_kwargs["is_cache_attn_ratio"] = True | |
| auto_extended_step = 5 | |
| target_auto_ratio = 1.05 | |
| else: | |
| is_auto_extend_scale = False | |
| if len(blend_steps) > 0: | |
| attn_steps = range(blend_steps[0] - 2, blend_steps[0] + 1) | |
| attention_store_kwargs["record_attention_steps"] = attn_steps | |
| self.attention_store = AttentionStore(prompts=prompt, tokenizer=self.tokenizer_2, subject_token=subject_token, **attention_store_kwargs) | |
| register_my_attention_processors(self.transformer, self.attention_store, extended_steps_multi, extended_steps_single) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.base_image_seq_len, | |
| self.scheduler.config.max_image_seq_len, | |
| self.scheduler.config.base_shift, | |
| self.scheduler.config.max_shift, | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| if isinstance(guidance_scale, float): | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latents.shape[0]) | |
| elif isinstance(guidance_scale, list): | |
| assert len(guidance_scale) == latents.shape[0], "The number of guidance scales must match the batch size" | |
| guidance = torch.tensor(guidance_scale, device=device, dtype=torch.float32) | |
| else: | |
| guidance = None | |
| if is_img_src and img_src_latents is None: | |
| assert source_latents is not None, "source_latents must be provided when is_img_src is True" | |
| rand_noise = noise[0].clone() | |
| img_src_latents = [] | |
| for i in range(timesteps.shape[0]): | |
| sigma = self.scheduler.sigmas[i] | |
| img_src_latents.append((1.0 - sigma) * source_latents[0] + sigma * rand_noise) | |
| # 6. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| # For denoising from source image | |
| if is_img_src: | |
| latents[0] = img_src_latents[i] | |
| # For Structure Transfer | |
| if (source_latents is not None) and i == structure_transfer_step: | |
| sigma = self.scheduler.sigmas[i] | |
| latents[1] = (1.0 - sigma) * source_latents[0] + sigma * noise[1] | |
| if is_auto_extend_scale and i == auto_extended_step: | |
| def f(gamma): | |
| self.attention_store.attention_ratios[i] = {} | |
| noise_pred = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| proccesor_kwargs={"step_index": i, "extended_scale": gamma}, | |
| )[0] | |
| scores_per_layer = self.attention_store.get_attention_ratios(step_indices=[i], display_imgs=False) | |
| source_sum, text_sum, target_sum = scores_per_layer['transformer_blocks'] | |
| # We want to find the gamma that makes the ratio equal to K | |
| ratio = (target_sum / source_sum) | |
| return (ratio - target_auto_ratio) | |
| gamma_sol = brentq(f, 1.0, 1.2, xtol=0.01) | |
| print('Chosen gamma:', gamma_sol) | |
| extended_scale = gamma_sol | |
| else: | |
| noise_pred = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| proccesor_kwargs={"step_index": i, "extended_scale": extended_scale}, | |
| )[0] | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents, x0 = self.scheduler.step(noise_pred, t, latents, return_dict=False, step_index=i) | |
| if use_offset and is_img_src and (i+1 < len(img_src_latents)): | |
| next_latent = img_src_latents[i+1] | |
| offset = (next_latent - latents[0]) | |
| latents[1] = latents[1] + offset | |
| # blend latents | |
| if i in blend_steps and (subject_token is not None) and (localization_model is not None): | |
| x0 = self._unpack_latents(x0, height, width, self.vae_scale_factor) | |
| x0 = (x0 / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| images = self.vae.decode(x0, return_dict=False)[0] | |
| images = self.image_processor.postprocess(images, output_type="pil") | |
| self.do_step_blend(images, latents, subject_token, localization_model, show_attention, i, blend_models) | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| # if XLA_AVAILABLE: | |
| # xm.mark_step() | |
| if output_type == "latent": | |
| image = latents | |
| elif output_type == "both": | |
| return_latents = latents | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type="pil") | |
| return (image, return_latents) | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |
| def do_step_blend(self, images, latents, subject_token, localization_model, | |
| show_attention, i, blend_models): | |
| device = latents.device | |
| latents_dtype = latents.dtype | |
| clipseg_processor = blend_models.get("clipseg_processor", None) | |
| clipseg_model = blend_models.get("clipseg_model", None) | |
| grounding_processor = blend_models.get("grounding_processor", None) | |
| grounding_model = blend_models.get("grounding_model", None) | |
| sam_predictor = blend_models.get("sam_predictor", None) | |
| image_to_display = [] | |
| titles_to_display = [] | |
| if show_attention: | |
| image_to_display += [images[0], images[1]] | |
| titles_to_display += ["Source X0", "Target X0"] | |
| if localization_model == "clipseg": | |
| subject_mask = clipseg_predict(clipseg_model, clipseg_processor, [images[-1]], f"A photo of {subject_token}", device) | |
| elif localization_model == "grounding_sam": | |
| subject_mask = grounding_sam_predict(grounding_model, grounding_processor, sam_predictor, images[-1], f"A {subject_token}.", device) | |
| elif localization_model == "clipseg_sam": | |
| subject_mask = clipseg_predict(clipseg_model, clipseg_processor, [images[-1]], f"A photo of {subject_token}", device) | |
| subject_mask = mask_to_box_sam_predict(subject_mask, sam_predictor, images[-1], None, device) | |
| elif localization_model == "attention": | |
| store = self.attention_store.image2text_store | |
| attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3) | |
| subject_mask = attention_masks[0][-1].to(device) | |
| subject_attention = attention_maps[0][-1].to(device) | |
| if show_attention: | |
| attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512) | |
| attention_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=512) | |
| image_to_display += [attentioned_image, attention_masked_image] | |
| titles_to_display += ["Attention", "Attention Mask"] | |
| elif localization_model == "attention_box_sam": | |
| store = self.attention_store.image2text_store | |
| attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3) | |
| attention_mask = attention_masks[0][-1].to(device) | |
| subject_attention = attention_maps[0][-1].to(device) | |
| subject_mask, bbox = mask_to_box_sam_predict(attention_mask, sam_predictor, images[-1], None, device) | |
| if show_attention: | |
| attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512) | |
| attention_masked_image = show_image_and_heatmap(attention_mask.float(), images[1], relevnace_res=512) | |
| sam_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=1024) | |
| sam_masked_image = draw_bboxes_on_image(sam_masked_image, [bbox.tolist()], color="green", thickness=5) | |
| image_to_display += [attentioned_image, attention_masked_image, sam_masked_image] | |
| titles_to_display += ["Attention", "Attention Mask", "SAM Mask"] | |
| elif localization_model == "attention_mask_sam": | |
| store = self.attention_store.image2text_store | |
| attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3) | |
| attention_mask = attention_masks[0][-1].to(device) | |
| subject_attention = attention_maps[0][-1].to(device) | |
| subject_mask = mask_to_mask_sam_predict(attention_mask, sam_predictor, images[-1], None, device) | |
| if show_attention: | |
| print('Attention:') | |
| attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512) | |
| attention_masked_image = show_image_and_heatmap(attention_mask.float(), images[1], relevnace_res=512) | |
| sam_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=1024) | |
| image_to_display += [attentioned_image, attention_masked_image, sam_masked_image] | |
| titles_to_display += ["Attention", "Attention Mask", "SAM Mask"] | |
| elif localization_model == "attention_points_sam": | |
| store = self.attention_store.image2text_store | |
| attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3) | |
| attention_mask = attention_masks[0][-1].to(device) | |
| subject_attention = attention_maps[0][-1].to(device) | |
| subject_mask, point_coords = attention_to_points_sam_predict(subject_attention, attention_mask, sam_predictor, images[1], None, device) | |
| if show_attention: | |
| print('Attention:') | |
| attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512) | |
| attention_masked_image = show_image_and_heatmap(attention_mask.float(), images[1], relevnace_res=512) | |
| sam_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=1024) | |
| sam_masked_image = draw_points_on_pil_image(sam_masked_image, point_coords, point_color="green", radius=10) | |
| image_to_display += [attentioned_image, attention_masked_image, sam_masked_image] | |
| titles_to_display += ["Attention", "Attention Mask", "SAM Mask"] | |
| if show_attention: | |
| show_images(image_to_display, titles_to_display, size=512, save_path="attn_vis.png") | |
| # Resize the mask to latents size | |
| latents_mask = torch.nn.functional.interpolate(subject_mask.view(1,1,subject_mask.shape[-2],subject_mask.shape[-1]), size=64, mode='bilinear').view(4096, 1).to(latents_dtype) | |
| latents_mask[latents_mask > 0.01] = 1 | |
| latents[1] = latents[1] * latents_mask + latents[0] * (1 - latents_mask) | |
| ############# Image to Image Methods ############# | |
| def img2img_encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| img2img_retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = img2img_retrieve_latents(self.vae.encode(image), generator=generator) | |
| image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| return image_latents | |
| def img2img_prepare_latents( | |
| self, | |
| image, | |
| timestep, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| height = 2 * (int(height) // self.vae_scale_factor) | |
| width = 2 * (int(width) // self.vae_scale_factor) | |
| shape = (batch_size, num_channels_latents, height, width) | |
| latent_image_ids = self.img2img_prepare_latent_image_ids(batch_size, height, width, device, dtype) | |
| if latents is not None: | |
| return latents.to(device=device, dtype=dtype), latent_image_ids | |
| image = image.to(device=device, dtype=dtype) | |
| image_latents = self.img2img_encode_vae_image(image=image, generator=generator) | |
| if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // image_latents.shape[0] | |
| image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) | |
| elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| image_latents = torch.cat([image_latents], dim=0) | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = self.scheduler.scale_noise(image_latents, timestep, noise) | |
| latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | |
| return latents, latent_image_ids | |
| def img2img_check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| strength, | |
| height, | |
| width, | |
| prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| max_sequence_length=None, | |
| ): | |
| if strength < 0 or strength > 1: | |
| raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
| raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
| if prompt_embeds is not None and pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
| ) | |
| if max_sequence_length is not None and max_sequence_length > 512: | |
| raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") | |
| # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps | |
| def img2img_get_timesteps(self, num_inference_steps, strength, device): | |
| # get the original timestep using init_timestep | |
| init_timestep = min(num_inference_steps * strength, num_inference_steps) | |
| t_start = int(max(num_inference_steps - init_timestep, 0)) | |
| timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
| if hasattr(self.scheduler, "set_begin_index"): | |
| self.scheduler.set_begin_index(t_start * self.scheduler.order) | |
| return timesteps, num_inference_steps - t_start | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids | |
| def img2img_prepare_latent_image_ids(batch_size, height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height // 2, width // 2, 3) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| def call_img2img( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| image: PipelineImageInput = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| strength: float = 0.6, | |
| num_inference_steps: int = 28, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 7.0, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| will be used instead | |
| image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
| `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both | |
| numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list | |
| or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a | |
| list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image | |
| latents as `image`, but if passing latents directly it is not encoded again. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
| strength (`float`, *optional*, defaults to 1.0): | |
| Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a | |
| starting point and more noise is added the higher the `strength`. The number of denoising steps depends | |
| on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising | |
| process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 | |
| essentially ignores `image`. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 7.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
| Examples: | |
| Returns: | |
| [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
| is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
| images. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.img2img_check_inputs( | |
| prompt, | |
| prompt_2, | |
| strength, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| # 2. Preprocess image | |
| init_image = self.image_processor.preprocess(image, height=height, width=width) | |
| init_image = init_image.to(dtype=torch.float32) | |
| # 3. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| register_regular_attention_processors(self.transformer) | |
| # 4.Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = (int(height) // self.vae_scale_factor) * (int(width) // self.vae_scale_factor) | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.base_image_seq_len, | |
| self.scheduler.config.max_image_seq_len, | |
| self.scheduler.config.base_shift, | |
| self.scheduler.config.max_shift, | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| sigmas, | |
| mu=mu, | |
| ) | |
| timesteps, num_inference_steps = self.img2img_get_timesteps(num_inference_steps, strength, device) | |
| if num_inference_steps < 1: | |
| raise ValueError( | |
| f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" | |
| f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." | |
| ) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, latent_image_ids = self.img2img_prepare_latents( | |
| init_image, | |
| latent_timestep, | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| text_ids = text_ids.expand(latents.shape[0], -1, -1) | |
| latent_image_ids = latent_image_ids.expand(latents.shape[0], -1, -1) | |
| # 6. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| # if XLA_AVAILABLE: | |
| # xm.mark_step() | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |
| ############# Invert Methods ############# | |
| def invert_prepare_latents( | |
| self, | |
| image, | |
| timestep, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| add_noise=False, | |
| ): | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| height = 2 * (int(height) // self.vae_scale_factor) | |
| width = 2 * (int(width) // self.vae_scale_factor) | |
| shape = (batch_size, num_channels_latents, height, width) | |
| latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) | |
| if latents is not None: | |
| return latents.to(device=device, dtype=dtype), latent_image_ids | |
| image = image.to(device=device, dtype=dtype) | |
| image_latents = self.img2img_encode_vae_image(image=image, generator=generator) | |
| if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // image_latents.shape[0] | |
| image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) | |
| elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| image_latents = torch.cat([image_latents], dim=0) | |
| if add_noise: | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = self.scheduler.scale_noise(image_latents, timestep, noise) | |
| else: | |
| latents = image_latents | |
| latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | |
| return latents, latent_image_ids | |
| def call_invert( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| image: PipelineImageInput = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 7.0, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| fixed_point_iterations: int = 1, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| will be used instead | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 7.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
| Examples: | |
| Returns: | |
| [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
| is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
| images. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| # 1.5. Preprocess image | |
| if isinstance(image, Image.Image): | |
| init_image = self.image_processor.preprocess(image, height=height, width=width) | |
| elif isinstance(image, torch.Tensor): | |
| init_image = image | |
| latents = image | |
| else: | |
| raise ValueError("Image must be of type `PIL.Image.Image` or `torch.Tensor`") | |
| init_image = init_image.to(dtype=torch.float32) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| # latents, latent_image_ids = self.prepare_latents( | |
| # batch_size * num_images_per_prompt, | |
| # num_channels_latents, | |
| # height, | |
| # width, | |
| # prompt_embeds.dtype, | |
| # device, | |
| # generator, | |
| # latents, | |
| # ) | |
| latents, latent_image_ids = self.invert_prepare_latents( | |
| init_image, | |
| None, | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| False | |
| ) | |
| register_regular_attention_processors(self.transformer) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.base_image_seq_len, | |
| self.scheduler.config.max_image_seq_len, | |
| self.scheduler.config.base_shift, | |
| self.scheduler.config.max_shift, | |
| ) | |
| # For Inversion, reverse the sigmas | |
| # sigmas = sigmas[::-1] | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.tensor([guidance_scale], device=device) | |
| guidance = guidance.expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| self.scheduler.sigmas = reversed(self.scheduler.sigmas) | |
| timesteps_zero_start = reversed(torch.cat([self.scheduler.timesteps[1:], torch.tensor([0], device=device)])) | |
| timesteps_one_start = reversed(self.scheduler.timesteps) | |
| self.scheduler.timesteps = timesteps_zero_start | |
| # self.scheduler.timesteps = timesteps_one_start | |
| timesteps = self.scheduler.timesteps | |
| latents_list = [] | |
| latents_list.append(latents) | |
| # 6. Denoising loop | |
| with self.progress_bar(total=num_inference_steps * fixed_point_iterations) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| original_latents = latents.clone() | |
| for j in range(fixed_point_iterations): | |
| if self.interrupt: | |
| continue | |
| if j == 0: | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = timesteps[i].expand(latents.shape[0]).to(latents.dtype) | |
| else: | |
| timestep = timesteps_one_start[i].expand(latents.shape[0]).to(latents.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latents, | |
| # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing) | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| # noise_pred = -noise_pred | |
| latents = self.scheduler.step(noise_pred, t, original_latents, return_dict=False, step_index=i)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| # if XLA_AVAILABLE: | |
| # xm.mark_step() | |
| latents_list.append(latents) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| return latents_list |