Spaces:
Running
Running
[release] speechIQ
Browse files- SpeechIQ_table.csv +14 -0
- app.py +148 -169
- src/about.py +71 -47
SpeechIQ_table.csv
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Model Type,Setup,Audio Encoder,Remember,Understand,Apply,Speech IQ
|
| 2 |
+
Agentic: ASR + LLM,Whisper_v2-1.5B + Qwen2_7B,Whisper_v2-1.5B,0.554,0.499,0.481,107.43
|
| 3 |
+
Agentic: ASR + LLM,Whisper_v3-1.5B + Qwen2_7B,Whisper_v2-1.5B,0.553,0.433,0.432,106.49
|
| 4 |
+
Agentic: ASR + LLM,Canary_1B + Qwen2_7B,Whisper_v2-1.5B,0.559,0.566,0.504,107.78
|
| 5 |
+
Agentic: ASR + LLM,OWSM-CTC_v3.1-1B + Qwen2_7B,OWSM-CTC_v3.1-1B,0.534,0.151,0.353,103.05
|
| 6 |
+
Agentic: ASR + GER + LLM,Whisper_v2-1.5B + GPT-4o + Qwen2_7B,Whisper_v2-1.5B,0.543,0.632,0.487,108.64
|
| 7 |
+
End2End,Qwen2-Audio_7B ,1.5B Whisper,-0.187,0.366,0.011,103.88
|
| 8 |
+
End2End,Qwen2.5-Omni_7B ,1.5B Whisper,0.472,0.41,0.509,105.74
|
| 9 |
+
End2End,Salmonn_13B ,1.5B Whisper,0.508,0.381,-1.146,101.03
|
| 10 |
+
End2End,Desta2_8B,1.5B Whisper,-2.575,-1.604,-0.233,79.69
|
| 11 |
+
End2End,AnyGPT_7B,SpeechTokenizer,0.314,-2.718,-2.893,60.02
|
| 12 |
+
End2End,Baichuan-omni-1.5_7B,1.5B Whisper,0.448,0.184,0.546,104.02
|
| 13 |
+
End2End,Gemini-1.5-flash,Google_USM,-1.885,0.641,0.673,107.85
|
| 14 |
+
End2End,Gemini-1.5-pro,Google_USM,0.492,0.409,0.71,107.08
|
app.py
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
| 3 |
import pandas as pd
|
| 4 |
-
|
| 5 |
-
from huggingface_hub import snapshot_download
|
| 6 |
|
| 7 |
from src.about import (
|
| 8 |
CITATION_BUTTON_LABEL,
|
|
@@ -13,192 +11,173 @@ from src.about import (
|
|
| 13 |
TITLE,
|
| 14 |
)
|
| 15 |
from src.display.css_html_js import custom_css
|
| 16 |
-
from src.display.utils import (
|
| 17 |
-
BENCHMARK_COLS,
|
| 18 |
-
COLS,
|
| 19 |
-
EVAL_COLS,
|
| 20 |
-
EVAL_TYPES,
|
| 21 |
-
AutoEvalColumn,
|
| 22 |
-
ModelType,
|
| 23 |
-
fields,
|
| 24 |
-
WeightType,
|
| 25 |
-
Precision
|
| 26 |
-
)
|
| 27 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 28 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 29 |
-
from src.submission.submit import add_new_eval
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def restart_space():
|
| 33 |
-
API.restart_space(repo_id=REPO_ID)
|
| 34 |
-
|
| 35 |
-
### Space initialisation
|
| 36 |
-
try:
|
| 37 |
-
print(EVAL_REQUESTS_PATH)
|
| 38 |
-
snapshot_download(
|
| 39 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 40 |
-
)
|
| 41 |
-
except Exception:
|
| 42 |
-
restart_space()
|
| 43 |
-
try:
|
| 44 |
-
print(EVAL_RESULTS_PATH)
|
| 45 |
-
snapshot_download(
|
| 46 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
| 47 |
-
)
|
| 48 |
-
except Exception:
|
| 49 |
-
restart_space()
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
(
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
ColumnFilter(
|
| 84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
| 85 |
-
),
|
| 86 |
-
],
|
| 87 |
-
bool_checkboxgroup_label="Hide models",
|
| 88 |
interactive=False,
|
|
|
|
|
|
|
|
|
|
| 89 |
)
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
demo = gr.Blocks(css=custom_css)
|
| 93 |
with demo:
|
| 94 |
gr.HTML(TITLE)
|
| 95 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 96 |
|
| 97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 98 |
-
with gr.TabItem("π
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
| 102 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 103 |
-
|
| 104 |
-
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 105 |
-
with gr.Column():
|
| 106 |
-
with gr.Row():
|
| 107 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 108 |
-
|
| 109 |
-
with gr.Column():
|
| 110 |
-
with gr.Accordion(
|
| 111 |
-
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
| 112 |
-
open=False,
|
| 113 |
-
):
|
| 114 |
-
with gr.Row():
|
| 115 |
-
finished_eval_table = gr.components.Dataframe(
|
| 116 |
-
value=finished_eval_queue_df,
|
| 117 |
-
headers=EVAL_COLS,
|
| 118 |
-
datatype=EVAL_TYPES,
|
| 119 |
-
row_count=5,
|
| 120 |
-
)
|
| 121 |
-
with gr.Accordion(
|
| 122 |
-
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 123 |
-
open=False,
|
| 124 |
-
):
|
| 125 |
-
with gr.Row():
|
| 126 |
-
running_eval_table = gr.components.Dataframe(
|
| 127 |
-
value=running_eval_queue_df,
|
| 128 |
-
headers=EVAL_COLS,
|
| 129 |
-
datatype=EVAL_TYPES,
|
| 130 |
-
row_count=5,
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
with gr.Accordion(
|
| 134 |
-
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 135 |
-
open=False,
|
| 136 |
-
):
|
| 137 |
-
with gr.Row():
|
| 138 |
-
pending_eval_table = gr.components.Dataframe(
|
| 139 |
-
value=pending_eval_queue_df,
|
| 140 |
-
headers=EVAL_COLS,
|
| 141 |
-
datatype=EVAL_TYPES,
|
| 142 |
-
row_count=5,
|
| 143 |
-
)
|
| 144 |
with gr.Row():
|
| 145 |
-
gr.Markdown(
|
| 146 |
-
|
|
|
|
| 147 |
with gr.Row():
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
submit_button.click(
|
| 179 |
-
add_new_eval,
|
| 180 |
-
[
|
| 181 |
-
model_name_textbox,
|
| 182 |
-
base_model_name_textbox,
|
| 183 |
-
revision_name_textbox,
|
| 184 |
-
precision,
|
| 185 |
-
weight_type,
|
| 186 |
-
model_type,
|
| 187 |
-
],
|
| 188 |
-
submission_result,
|
| 189 |
-
)
|
| 190 |
|
|
|
|
| 191 |
with gr.Row():
|
| 192 |
with gr.Accordion("π Citation", open=False):
|
| 193 |
citation_button = gr.Textbox(
|
| 194 |
value=CITATION_BUTTON_TEXT,
|
| 195 |
label=CITATION_BUTTON_LABEL,
|
| 196 |
-
lines=
|
| 197 |
elem_id="citation-button",
|
| 198 |
show_copy_button=True,
|
| 199 |
)
|
| 200 |
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
+
import numpy as np
|
|
|
|
| 4 |
|
| 5 |
from src.about import (
|
| 6 |
CITATION_BUTTON_LABEL,
|
|
|
|
| 11 |
TITLE,
|
| 12 |
)
|
| 13 |
from src.display.css_html_js import custom_css
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
def load_speechiq_data():
|
| 16 |
+
"""Load and process the SpeechIQ results from CSV file."""
|
| 17 |
+
try:
|
| 18 |
+
df = pd.read_csv("SpeechIQ_table.csv")
|
| 19 |
+
|
| 20 |
+
# Round numerical columns to 3 decimal places for better display
|
| 21 |
+
numerical_cols = ['Remember', 'Understand', 'Apply', 'Speech IQ']
|
| 22 |
+
for col in numerical_cols:
|
| 23 |
+
if col in df.columns:
|
| 24 |
+
df[col] = df[col].round(3)
|
| 25 |
+
|
| 26 |
+
# Sort by Speech IQ score in descending order
|
| 27 |
+
df = df.sort_values('Speech IQ', ascending=False)
|
| 28 |
+
|
| 29 |
+
return df
|
| 30 |
+
except Exception as e:
|
| 31 |
+
print(f"Error loading SpeechIQ data: {e}")
|
| 32 |
+
# Return empty dataframe with expected columns if file not found
|
| 33 |
+
return pd.DataFrame(columns=['Model Type', 'Setup', 'Audio Encoder', 'Remember', 'Understand', 'Apply', 'Speech IQ'])
|
| 34 |
+
|
| 35 |
+
def create_leaderboard_table(df):
|
| 36 |
+
"""Create a formatted leaderboard table with color coding."""
|
| 37 |
+
if df.empty:
|
| 38 |
+
return gr.Dataframe(
|
| 39 |
+
value=df,
|
| 40 |
+
headers=['Model Type', 'Setup', 'Audio Encoder', 'Remember', 'Understand', 'Apply', 'Speech IQ'],
|
| 41 |
+
interactive=False
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
return gr.Dataframe(
|
| 45 |
+
value=df,
|
| 46 |
+
headers=df.columns.tolist(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
interactive=False,
|
| 48 |
+
wrap=True,
|
| 49 |
+
column_widths=["15%", "25%", "15%", "11%", "11%", "11%", "12%"],
|
| 50 |
+
height=600
|
| 51 |
)
|
| 52 |
|
| 53 |
+
def get_top_performers(df):
|
| 54 |
+
"""Get statistics about top performers."""
|
| 55 |
+
if df.empty:
|
| 56 |
+
return "No data available."
|
| 57 |
+
|
| 58 |
+
top_score = df['Speech IQ'].max()
|
| 59 |
+
top_model = df.loc[df['Speech IQ'].idxmax()]
|
| 60 |
+
|
| 61 |
+
agentic_best = df[df['Model Type'].str.contains('Agentic', na=False)]['Speech IQ'].max() if not df[df['Model Type'].str.contains('Agentic', na=False)].empty else 0
|
| 62 |
+
end2end_best = df[df['Model Type'].str.contains('End2End', na=False)]['Speech IQ'].max() if not df[df['Model Type'].str.contains('End2End', na=False)].empty else 0
|
| 63 |
+
|
| 64 |
+
stats_text = f"""
|
| 65 |
+
### π Leaderboard Statistics
|
| 66 |
+
|
| 67 |
+
**π Top Performer:** {top_model['Setup']} (Score: {top_score})
|
| 68 |
+
|
| 69 |
+
**π€ Best Agentic Model:** {agentic_best}
|
| 70 |
+
|
| 71 |
+
**π Best End2End Model:** {end2end_best}
|
| 72 |
+
|
| 73 |
+
**π Total Models Evaluated:** {len(df)}
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
+
return stats_text
|
| 77 |
+
|
| 78 |
+
# Load the data
|
| 79 |
+
speechiq_df = load_speechiq_data()
|
| 80 |
+
|
| 81 |
+
# Create the Gradio interface
|
| 82 |
+
demo = gr.Blocks(css=custom_css, title="SpeechIQ Leaderboard")
|
| 83 |
|
|
|
|
| 84 |
with demo:
|
| 85 |
gr.HTML(TITLE)
|
| 86 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 87 |
|
| 88 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 89 |
+
with gr.TabItem("π
SpeechIQ Leaderboard", elem_id="speechiq-leaderboard-tab", id=0):
|
| 90 |
+
|
| 91 |
+
# Statistics section
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
with gr.Row():
|
| 93 |
+
gr.Markdown(get_top_performers(speechiq_df), elem_classes="markdown-text")
|
| 94 |
+
|
| 95 |
+
# Main leaderboard table
|
| 96 |
with gr.Row():
|
| 97 |
+
leaderboard_table = create_leaderboard_table(speechiq_df)
|
| 98 |
+
|
| 99 |
+
# Legend and explanation
|
| 100 |
+
with gr.Row():
|
| 101 |
+
gr.Markdown("""
|
| 102 |
+
### π Column Explanations
|
| 103 |
+
|
| 104 |
+
- **Model Type**: Architecture approach (Agentic vs End2End)
|
| 105 |
+
- **Setup**: Specific model configuration and components
|
| 106 |
+
- **Audio Encoder**: The audio processing component used
|
| 107 |
+
- **Remember**: Verbatim accuracy score (WER-based)
|
| 108 |
+
- **Understand**: Semantic interpretation similarity score
|
| 109 |
+
- **Apply**: Downstream task performance score
|
| 110 |
+
- **Speech IQ**: Overall intelligence quotient combining all dimensions
|
| 111 |
+
|
| 112 |
+
*Higher scores indicate better performance across all metrics.*
|
| 113 |
+
""", elem_classes="markdown-text")
|
| 114 |
+
|
| 115 |
+
with gr.TabItem("π Analysis", elem_id="analysis-tab", id=1):
|
| 116 |
+
with gr.Row():
|
| 117 |
+
# Create performance comparison charts
|
| 118 |
+
if not speechiq_df.empty:
|
| 119 |
+
# Group by model type for comparison
|
| 120 |
+
agentic_models = speechiq_df[speechiq_df['Model Type'].str.contains('Agentic', na=False)]
|
| 121 |
+
end2end_models = speechiq_df[speechiq_df['Model Type'].str.contains('End2End', na=False)]
|
| 122 |
+
|
| 123 |
+
comparison_text = f"""
|
| 124 |
+
### π Model Type Comparison
|
| 125 |
+
|
| 126 |
+
**Agentic Models (ASR + LLM):**
|
| 127 |
+
- Count: {len(agentic_models)}
|
| 128 |
+
- Average Speech IQ: {agentic_models['Speech IQ'].mean():.2f}
|
| 129 |
+
- Best Score: {agentic_models['Speech IQ'].max():.2f}
|
| 130 |
+
|
| 131 |
+
**End-to-End Models:**
|
| 132 |
+
- Count: {len(end2end_models)}
|
| 133 |
+
- Average Speech IQ: {end2end_models['Speech IQ'].mean():.2f}
|
| 134 |
+
- Best Score: {end2end_models['Speech IQ'].max():.2f}
|
| 135 |
+
|
| 136 |
+
### π― Cognitive Dimension Analysis
|
| 137 |
+
|
| 138 |
+
**Remember (Verbatim Accuracy):**
|
| 139 |
+
- Best performer: {speechiq_df.loc[speechiq_df['Remember'].idxmax(), 'Setup']} ({speechiq_df['Remember'].max():.3f})
|
| 140 |
+
|
| 141 |
+
**Understand (Semantic Similarity):**
|
| 142 |
+
- Best performer: {speechiq_df.loc[speechiq_df['Understand'].idxmax(), 'Setup']} ({speechiq_df['Understand'].max():.3f})
|
| 143 |
+
|
| 144 |
+
**Apply (Task Performance):**
|
| 145 |
+
- Best performer: {speechiq_df.loc[speechiq_df['Apply'].idxmax(), 'Setup']} ({speechiq_df['Apply'].max():.3f})
|
| 146 |
+
"""
|
| 147 |
+
|
| 148 |
+
gr.Markdown(comparison_text, elem_classes="markdown-text")
|
| 149 |
+
else:
|
| 150 |
+
gr.Markdown("No data available for analysis.", elem_classes="markdown-text")
|
| 151 |
+
|
| 152 |
+
with gr.TabItem("π About", elem_id="about-tab", id=2):
|
| 153 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 154 |
|
| 155 |
+
with gr.TabItem("π Submit", elem_id="submit-tab", id=3):
|
| 156 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
+
# Citation section
|
| 159 |
with gr.Row():
|
| 160 |
with gr.Accordion("π Citation", open=False):
|
| 161 |
citation_button = gr.Textbox(
|
| 162 |
value=CITATION_BUTTON_TEXT,
|
| 163 |
label=CITATION_BUTTON_LABEL,
|
| 164 |
+
lines=6,
|
| 165 |
elem_id="citation-button",
|
| 166 |
show_copy_button=True,
|
| 167 |
)
|
| 168 |
|
| 169 |
+
# Add refresh functionality
|
| 170 |
+
with gr.Row():
|
| 171 |
+
refresh_button = gr.Button("π Refresh Data", variant="secondary")
|
| 172 |
+
|
| 173 |
+
def refresh_data():
|
| 174 |
+
updated_df = load_speechiq_data()
|
| 175 |
+
return create_leaderboard_table(updated_df), get_top_performers(updated_df)
|
| 176 |
+
|
| 177 |
+
refresh_button.click(
|
| 178 |
+
refresh_data,
|
| 179 |
+
outputs=[leaderboard_table, gr.Markdown()]
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
if __name__ == "__main__":
|
| 183 |
+
demo.launch(share=False, server_name="0.0.0.0", server_port=7860)
|
src/about.py
CHANGED
|
@@ -1,72 +1,96 @@
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
benchmark: str
|
| 7 |
-
metric: str
|
| 8 |
-
col_name: str
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
# Select your tasks here
|
| 12 |
-
# ---------------------------------------------------
|
| 13 |
-
class Tasks(Enum):
|
| 14 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 15 |
-
task0 = Task("anli_r1", "acc", "ANLI")
|
| 16 |
-
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
| 20 |
|
|
|
|
| 21 |
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
INTRODUCTION_TEXT = """
|
| 28 |
-
Intro text
|
| 29 |
"""
|
| 30 |
|
| 31 |
# Which evaluations are you running? how can people reproduce what you have?
|
| 32 |
-
LLM_BENCHMARKS_TEXT =
|
| 33 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
To reproduce our results, here is the commands you can run:
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
"""
|
| 39 |
|
| 40 |
EVALUATION_QUEUE_TEXT = """
|
| 41 |
-
##
|
| 42 |
|
| 43 |
-
|
| 44 |
-
```python
|
| 45 |
-
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 46 |
-
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
| 47 |
-
model = AutoModel.from_pretrained("your model name", revision=revision)
|
| 48 |
-
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
| 49 |
-
```
|
| 50 |
-
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
### 2)
|
| 56 |
-
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
### 3)
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
### 4)
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
##
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
| 68 |
"""
|
| 69 |
|
| 70 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 71 |
-
CITATION_BUTTON_TEXT = r"""
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
| 3 |
|
| 4 |
+
# Your leaderboard name
|
| 5 |
+
TITLE = """<h1 align="center" id="space-title">ποΈ Speech Intelligence Quotient (SpeechIQ) Leaderboard</h1>"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# What does your leaderboard evaluate?
|
| 8 |
+
INTRODUCTION_TEXT = """
|
| 9 |
+
## π― Welcome to the Speech Intelligence Quotient (SpeechIQ) Leaderboard!
|
| 10 |
|
| 11 |
+
This leaderboard presents evaluation results for voice understanding large language models (LLM<sub>Voice</sub>) using our novel SpeechIQ evaluation framework.
|
| 12 |
|
| 13 |
+
**SpeechIQ** is a human cognition-inspired evaluation pipeline that assesses voice understanding abilities across three cognitive levels based on Bloom's Taxonomy:
|
| 14 |
|
| 15 |
+
- **π§ Remembering**: Verbatim accuracy (WER-based)
|
| 16 |
+
- **π‘ Understanding**: Similarity of LLM's interpretations
|
| 17 |
+
- **π Application**: QA accuracy for downstream tasks
|
| 18 |
|
| 19 |
+
The **Speech IQ Score** provides a unified metric for comparing both cascaded methods (ASR+LLM) and end-to-end models.
|
|
|
|
|
|
|
| 20 |
"""
|
| 21 |
|
| 22 |
# Which evaluations are you running? how can people reproduce what you have?
|
| 23 |
+
LLM_BENCHMARKS_TEXT = """
|
| 24 |
+
## π About SpeechIQ Evaluation
|
| 25 |
+
|
| 26 |
+
**Speech Intelligence Quotient (SpeechIQ)** represents a first-of-its-kind intelligence examination that bridges cognitive principles with voice-oriented benchmarks. Our framework moves beyond traditional metrics like Word Error Rate (WER) to provide comprehensive evaluation of voice understanding capabilities.
|
| 27 |
+
|
| 28 |
+
### π― Evaluation Framework
|
| 29 |
|
| 30 |
+
SpeechIQ evaluates models across three cognitive dimensions inspired by Bloom's Taxonomy:
|
|
|
|
| 31 |
|
| 32 |
+
1. **Remember** (Verbatim Accuracy): Tests the model's ability to accurately capture spoken content
|
| 33 |
+
2. **Understand** (Interpretation Similarity): Evaluates how well the model comprehends the meaning of speech
|
| 34 |
+
3. **Apply** (Downstream Performance): Measures the model's ability to use speech understanding for practical tasks
|
| 35 |
+
|
| 36 |
+
### π Model Categories
|
| 37 |
+
|
| 38 |
+
- **Agentic (ASR + LLM)**: Cascaded approaches using separate ASR and LLM components
|
| 39 |
+
- **End2End**: Direct speech-to-text models that process audio end-to-end
|
| 40 |
+
|
| 41 |
+
### π¬ Key Benefits
|
| 42 |
+
|
| 43 |
+
- **Unified Comparisons**: Compare cascaded and end-to-end approaches on equal footing
|
| 44 |
+
- **Error Detection**: Identify annotation errors in existing benchmarks
|
| 45 |
+
- **Hallucination Detection**: Detect and quantify hallucinations in voice LLMs
|
| 46 |
+
- **Cognitive Assessment**: Map model capabilities to human cognitive principles
|
| 47 |
+
|
| 48 |
+
### π Speech IQ Score
|
| 49 |
+
|
| 50 |
+
The final Speech IQ Score combines performance across all three dimensions to provide a comprehensive measure of voice understanding intelligence.
|
| 51 |
+
|
| 52 |
+
## π Reproducibility
|
| 53 |
+
|
| 54 |
+
For detailed methodology and reproduction instructions, please refer to our paper and codebase.
|
| 55 |
"""
|
| 56 |
|
| 57 |
EVALUATION_QUEUE_TEXT = """
|
| 58 |
+
## π Submit Your Model for SpeechIQ Evaluation
|
| 59 |
|
| 60 |
+
To submit your voice understanding model for SpeechIQ evaluation:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
### 1) Ensure Model Compatibility
|
| 63 |
+
Make sure your model can process audio inputs and generate text outputs in one of these formats:
|
| 64 |
+
- **ASR + LLM**: Separate ASR and LLM components
|
| 65 |
+
- **End-to-End**: Direct audio-to-text processing
|
| 66 |
|
| 67 |
+
### 2) Model Requirements
|
| 68 |
+
- Model must be publicly accessible
|
| 69 |
+
- Provide clear documentation of audio input format and expected outputs
|
| 70 |
+
- Include information about audio encoder specifications
|
| 71 |
|
| 72 |
+
### 3) Evaluation Domains
|
| 73 |
+
Your model will be evaluated across:
|
| 74 |
+
- **Remember**: Transcription accuracy
|
| 75 |
+
- **Understand**: Semantic understanding
|
| 76 |
+
- **Apply**: Task-specific performance
|
| 77 |
|
| 78 |
+
### 4) Documentation
|
| 79 |
+
Please provide:
|
| 80 |
+
- Model architecture details
|
| 81 |
+
- Training data information
|
| 82 |
+
- Audio preprocessing requirements
|
| 83 |
+
- Expected input/output formats
|
| 84 |
|
| 85 |
+
## π§ Contact
|
| 86 |
+
|
| 87 |
+
For questions about SpeechIQ evaluation or to submit your model, please contact the research team.
|
|
|
|
| 88 |
"""
|
| 89 |
|
| 90 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 91 |
+
CITATION_BUTTON_TEXT = r"""@article{speechiq2024,
|
| 92 |
+
title={Speech Intelligence Quotient (SpeechIQ): A Human Cognition-Inspired Evaluation Framework for Voice Understanding Large Language Models},
|
| 93 |
+
author={[Authors]},
|
| 94 |
+
journal={[Journal/Conference]},
|
| 95 |
+
year={2024}
|
| 96 |
+
}"""
|