Spaces:
Running
Running
update
Browse files- app.py +41 -26
- eagle_vl/serve/chat_utils.py +42 -20
- eagle_vl/serve/inference.py +32 -13
app.py
CHANGED
|
@@ -39,7 +39,7 @@ logger = configure_logger()
|
|
| 39 |
|
| 40 |
def parse_args():
|
| 41 |
parser = argparse.ArgumentParser()
|
| 42 |
-
parser.add_argument("--model", type=str, default="
|
| 43 |
parser.add_argument(
|
| 44 |
"--local-path",
|
| 45 |
type=str,
|
|
@@ -57,7 +57,7 @@ def fetch_model(model_name: str):
|
|
| 57 |
if args.local_path:
|
| 58 |
model_path = args.local_path
|
| 59 |
else:
|
| 60 |
-
model_path = f"
|
| 61 |
|
| 62 |
if model_name in DEPLOY_MODELS:
|
| 63 |
model_info = DEPLOY_MODELS[model_name]
|
|
@@ -100,6 +100,7 @@ def predict(
|
|
| 100 |
temperature,
|
| 101 |
max_length_tokens,
|
| 102 |
max_context_length_tokens,
|
|
|
|
| 103 |
chunk_size: int = 512,
|
| 104 |
):
|
| 105 |
"""
|
|
@@ -116,18 +117,7 @@ def predict(
|
|
| 116 |
max_context_length_tokens (int): The max context length tokens.
|
| 117 |
chunk_size (int): The chunk size.
|
| 118 |
"""
|
| 119 |
-
|
| 120 |
-
try:
|
| 121 |
-
logger.info("fetching model")
|
| 122 |
-
model, processor = fetch_model(args.model)
|
| 123 |
-
logger.info("model fetched")
|
| 124 |
-
if text == "":
|
| 125 |
-
yield chatbot, history, "Empty context."
|
| 126 |
-
return
|
| 127 |
-
except KeyError:
|
| 128 |
-
logger.info("no model found")
|
| 129 |
-
yield [[text, "No Model Found"]], [], "No Model Found"
|
| 130 |
-
return
|
| 131 |
|
| 132 |
if images is None:
|
| 133 |
images = []
|
|
@@ -136,15 +126,33 @@ def predict(
|
|
| 136 |
pil_images = []
|
| 137 |
for img_or_file in images:
|
| 138 |
try:
|
|
|
|
| 139 |
# load as pil image
|
| 140 |
if isinstance(images, Image.Image):
|
| 141 |
pil_images.append(img_or_file)
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
| 145 |
except Exception as e:
|
| 146 |
print(f"Error loading image: {e}")
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
# generate prompt
|
| 149 |
conversation = generate_prompt_with_history(
|
| 150 |
text,
|
|
@@ -166,6 +174,7 @@ def predict(
|
|
| 166 |
max_length=max_length_tokens,
|
| 167 |
temperature=temperature,
|
| 168 |
top_p=top_p,
|
|
|
|
| 169 |
):
|
| 170 |
full_response += x
|
| 171 |
response = strip_stop_words(full_response, stop_words)
|
|
@@ -174,12 +183,12 @@ def predict(
|
|
| 174 |
|
| 175 |
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
|
| 176 |
|
| 177 |
-
if last_image is not None:
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
|
| 184 |
logger.info("flushed result to gradio")
|
| 185 |
|
|
@@ -202,6 +211,7 @@ def retry(
|
|
| 202 |
temperature,
|
| 203 |
max_length_tokens,
|
| 204 |
max_context_length_tokens,
|
|
|
|
| 205 |
chunk_size: int = 512,
|
| 206 |
):
|
| 207 |
"""
|
|
@@ -226,6 +236,7 @@ def retry(
|
|
| 226 |
temperature,
|
| 227 |
max_length_tokens,
|
| 228 |
max_context_length_tokens,
|
|
|
|
| 229 |
chunk_size,
|
| 230 |
)
|
| 231 |
|
|
@@ -265,9 +276,10 @@ def build_demo(args: argparse.Namespace) -> gr.Blocks:
|
|
| 265 |
with gr.Column():
|
| 266 |
# add note no more than 2 images once
|
| 267 |
# gr.Markdown("Note: you can upload no more than 2 images once")
|
| 268 |
-
upload_images = gr.Files(file_types=["image"], show_label=True)
|
| 269 |
gallery = gr.Gallery(columns=[3], height="200px", show_label=True)
|
| 270 |
upload_images.change(preview_images, inputs=upload_images, outputs=gallery)
|
|
|
|
| 271 |
# Parameter Setting Tab for control the generation parameters
|
| 272 |
with gr.Tab(label="Parameter Setting"):
|
| 273 |
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p")
|
|
@@ -280,7 +292,9 @@ def build_demo(args: argparse.Namespace) -> gr.Blocks:
|
|
| 280 |
max_context_length_tokens = gr.Slider(
|
| 281 |
minimum=512, maximum=16384, value=4096, step=64, interactive=True, label="Max Context Length Tokens"
|
| 282 |
)
|
| 283 |
-
|
|
|
|
|
|
|
| 284 |
show_images = gr.HTML(visible=False)
|
| 285 |
|
| 286 |
gr.Examples(
|
|
@@ -298,6 +312,7 @@ def build_demo(args: argparse.Namespace) -> gr.Blocks:
|
|
| 298 |
temperature,
|
| 299 |
max_length_tokens,
|
| 300 |
max_context_length_tokens,
|
|
|
|
| 301 |
]
|
| 302 |
output_widgets = [chatbot, history, status_display]
|
| 303 |
|
|
@@ -336,7 +351,7 @@ def main(args: argparse.Namespace):
|
|
| 336 |
demo.queue().launch(
|
| 337 |
favicon_path=favicon_path,
|
| 338 |
server_name=args.ip,
|
| 339 |
-
server_port=args.port
|
| 340 |
)
|
| 341 |
|
| 342 |
|
|
|
|
| 39 |
|
| 40 |
def parse_args():
|
| 41 |
parser = argparse.ArgumentParser()
|
| 42 |
+
parser.add_argument("--model", type=str, default="Eagle2.5-VL-8B-Preview")
|
| 43 |
parser.add_argument(
|
| 44 |
"--local-path",
|
| 45 |
type=str,
|
|
|
|
| 57 |
if args.local_path:
|
| 58 |
model_path = args.local_path
|
| 59 |
else:
|
| 60 |
+
model_path = f"NVEagle/{args.model}"
|
| 61 |
|
| 62 |
if model_name in DEPLOY_MODELS:
|
| 63 |
model_info = DEPLOY_MODELS[model_name]
|
|
|
|
| 100 |
temperature,
|
| 101 |
max_length_tokens,
|
| 102 |
max_context_length_tokens,
|
| 103 |
+
video_nframes,
|
| 104 |
chunk_size: int = 512,
|
| 105 |
):
|
| 106 |
"""
|
|
|
|
| 117 |
max_context_length_tokens (int): The max context length tokens.
|
| 118 |
chunk_size (int): The chunk size.
|
| 119 |
"""
|
| 120 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
if images is None:
|
| 123 |
images = []
|
|
|
|
| 126 |
pil_images = []
|
| 127 |
for img_or_file in images:
|
| 128 |
try:
|
| 129 |
+
logger.info(f"img_or_file: {img_or_file}")
|
| 130 |
# load as pil image
|
| 131 |
if isinstance(images, Image.Image):
|
| 132 |
pil_images.append(img_or_file)
|
| 133 |
+
elif isinstance(img_or_file, str):
|
| 134 |
+
if img_or_file.endswith((".mp4", ".mov", ".avi", ".webm")):
|
| 135 |
+
pil_images.append(img_or_file)
|
| 136 |
+
else:
|
| 137 |
+
image = Image.open(img_or_file.name).convert("RGB")
|
| 138 |
+
pil_images.append(image)
|
| 139 |
except Exception as e:
|
| 140 |
print(f"Error loading image: {e}")
|
| 141 |
|
| 142 |
+
|
| 143 |
+
print("running the prediction function")
|
| 144 |
+
try:
|
| 145 |
+
logger.info("fetching model")
|
| 146 |
+
model, processor = fetch_model(args.model)
|
| 147 |
+
logger.info("model fetched")
|
| 148 |
+
if text == "":
|
| 149 |
+
yield chatbot, history, "Empty context."
|
| 150 |
+
return
|
| 151 |
+
except KeyError:
|
| 152 |
+
logger.info("no model found")
|
| 153 |
+
yield [[text, "No Model Found"]], [], "No Model Found"
|
| 154 |
+
return
|
| 155 |
+
|
| 156 |
# generate prompt
|
| 157 |
conversation = generate_prompt_with_history(
|
| 158 |
text,
|
|
|
|
| 174 |
max_length=max_length_tokens,
|
| 175 |
temperature=temperature,
|
| 176 |
top_p=top_p,
|
| 177 |
+
video_nframes=video_nframes,
|
| 178 |
):
|
| 179 |
full_response += x
|
| 180 |
response = strip_stop_words(full_response, stop_words)
|
|
|
|
| 183 |
|
| 184 |
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
|
| 185 |
|
| 186 |
+
# if last_image is not None:
|
| 187 |
+
# vg_image = parse_ref_bbox(response, last_image)
|
| 188 |
+
# if vg_image is not None:
|
| 189 |
+
# vg_base64 = pil_to_base64(vg_image, "vg", max_size=800, min_size=400)
|
| 190 |
+
# gradio_chatbot_output[-1][1] += vg_base64
|
| 191 |
+
# yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
|
| 192 |
|
| 193 |
logger.info("flushed result to gradio")
|
| 194 |
|
|
|
|
| 211 |
temperature,
|
| 212 |
max_length_tokens,
|
| 213 |
max_context_length_tokens,
|
| 214 |
+
video_nframes,
|
| 215 |
chunk_size: int = 512,
|
| 216 |
):
|
| 217 |
"""
|
|
|
|
| 236 |
temperature,
|
| 237 |
max_length_tokens,
|
| 238 |
max_context_length_tokens,
|
| 239 |
+
video_nframes,
|
| 240 |
chunk_size,
|
| 241 |
)
|
| 242 |
|
|
|
|
| 276 |
with gr.Column():
|
| 277 |
# add note no more than 2 images once
|
| 278 |
# gr.Markdown("Note: you can upload no more than 2 images once")
|
| 279 |
+
upload_images = gr.Files(file_types=["image", "video"], show_label=True)
|
| 280 |
gallery = gr.Gallery(columns=[3], height="200px", show_label=True)
|
| 281 |
upload_images.change(preview_images, inputs=upload_images, outputs=gallery)
|
| 282 |
+
|
| 283 |
# Parameter Setting Tab for control the generation parameters
|
| 284 |
with gr.Tab(label="Parameter Setting"):
|
| 285 |
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p")
|
|
|
|
| 292 |
max_context_length_tokens = gr.Slider(
|
| 293 |
minimum=512, maximum=16384, value=4096, step=64, interactive=True, label="Max Context Length Tokens"
|
| 294 |
)
|
| 295 |
+
video_nframes = gr.Slider(
|
| 296 |
+
minimum=1, maximum=128, value=16, step=1, interactive=True, label="Video Nframes"
|
| 297 |
+
)
|
| 298 |
show_images = gr.HTML(visible=False)
|
| 299 |
|
| 300 |
gr.Examples(
|
|
|
|
| 312 |
temperature,
|
| 313 |
max_length_tokens,
|
| 314 |
max_context_length_tokens,
|
| 315 |
+
video_nframes
|
| 316 |
]
|
| 317 |
output_widgets = [chatbot, history, status_display]
|
| 318 |
|
|
|
|
| 351 |
demo.queue().launch(
|
| 352 |
favicon_path=favicon_path,
|
| 353 |
server_name=args.ip,
|
| 354 |
+
server_port=args.port,
|
| 355 |
)
|
| 356 |
|
| 357 |
|
eagle_vl/serve/chat_utils.py
CHANGED
|
@@ -13,7 +13,7 @@ import gradio as gr
|
|
| 13 |
import torch
|
| 14 |
import os
|
| 15 |
from .utils import pil_to_base64
|
| 16 |
-
|
| 17 |
IMAGE_TOKEN = "<image>"
|
| 18 |
logger = logging.getLogger("gradio_logger")
|
| 19 |
|
|
@@ -324,6 +324,7 @@ def convert_conversation_to_prompts(conversation: Conversation):
|
|
| 324 |
Convert the conversation to prompts.
|
| 325 |
"""
|
| 326 |
conv_prompts = []
|
|
|
|
| 327 |
last_image = None
|
| 328 |
|
| 329 |
messages = conversation.messages
|
|
@@ -342,34 +343,55 @@ def convert_conversation_to_prompts(conversation: Conversation):
|
|
| 342 |
|
| 343 |
|
| 344 |
def to_gradio_chatbot(conversation: Conversation) -> list:
|
| 345 |
-
"""Convert the conversation to gradio chatbot format."""
|
| 346 |
ret = []
|
| 347 |
for i, (_, msg) in enumerate(conversation.messages[conversation.offset :]):
|
|
|
|
| 348 |
if i % 2 == 0:
|
| 349 |
-
if
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
)
|
| 363 |
else:
|
| 364 |
-
|
|
|
|
| 365 |
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
|
|
|
| 370 |
|
|
|
|
| 371 |
ret.append([msg, None])
|
| 372 |
else:
|
|
|
|
| 373 |
ret[-1][-1] = msg
|
| 374 |
return ret
|
| 375 |
|
|
|
|
| 13 |
import torch
|
| 14 |
import os
|
| 15 |
from .utils import pil_to_base64
|
| 16 |
+
import mimetypes
|
| 17 |
IMAGE_TOKEN = "<image>"
|
| 18 |
logger = logging.getLogger("gradio_logger")
|
| 19 |
|
|
|
|
| 324 |
Convert the conversation to prompts.
|
| 325 |
"""
|
| 326 |
conv_prompts = []
|
| 327 |
+
|
| 328 |
last_image = None
|
| 329 |
|
| 330 |
messages = conversation.messages
|
|
|
|
| 343 |
|
| 344 |
|
| 345 |
def to_gradio_chatbot(conversation: Conversation) -> list:
|
| 346 |
+
"""Convert the conversation to gradio chatbot format, supporting images and video."""
|
| 347 |
ret = []
|
| 348 |
for i, (_, msg) in enumerate(conversation.messages[conversation.offset :]):
|
| 349 |
+
# User message
|
| 350 |
if i % 2 == 0:
|
| 351 |
+
if isinstance(msg, tuple):
|
| 352 |
+
msg_text, media = copy.deepcopy(msg)
|
| 353 |
+
media_str = ""
|
| 354 |
+
|
| 355 |
+
# Handle list of media items
|
| 356 |
+
if isinstance(media, list):
|
| 357 |
+
items = media
|
| 358 |
+
else:
|
| 359 |
+
items = [media]
|
| 360 |
+
|
| 361 |
+
for j, item in enumerate(items):
|
| 362 |
+
# If string path, determine type
|
| 363 |
+
if isinstance(item, str):
|
| 364 |
+
mime, _ = mimetypes.guess_type(item)
|
| 365 |
+
with open(item, "rb") as f:
|
| 366 |
+
data = f.read()
|
| 367 |
+
b64 = base64.b64encode(data).decode()
|
| 368 |
+
|
| 369 |
+
if mime and mime.startswith("image/"):
|
| 370 |
+
media_str += (
|
| 371 |
+
f'<img src="data:{mime};base64,{b64}" '
|
| 372 |
+
f'alt="user upload image_{j}" '
|
| 373 |
+
f'style="max-width:300px;height:auto;" />'
|
| 374 |
+
)
|
| 375 |
+
elif mime and mime.startswith("video/"):
|
| 376 |
+
media_str += (
|
| 377 |
+
f'<video controls '
|
| 378 |
+
f'style="max-width:300px;height:auto;" '
|
| 379 |
+
f'src="data:{mime};base64,{b64}"></video>'
|
| 380 |
)
|
| 381 |
else:
|
| 382 |
+
# Fallback to link
|
| 383 |
+
media_str += f'<a href="{item}" target="_blank">{item}</a>'
|
| 384 |
|
| 385 |
+
# If PIL image
|
| 386 |
+
else:
|
| 387 |
+
media_str += pil_to_base64(item, f"user upload image_{j}", max_size=800, min_size=400)
|
| 388 |
+
|
| 389 |
+
msg = media_str + msg_text
|
| 390 |
|
| 391 |
+
# Append user side
|
| 392 |
ret.append([msg, None])
|
| 393 |
else:
|
| 394 |
+
# Assistant side, fill previous tuple
|
| 395 |
ret[-1][-1] = msg
|
| 396 |
return ret
|
| 397 |
|
eagle_vl/serve/inference.py
CHANGED
|
@@ -12,7 +12,7 @@ from transformers import (
|
|
| 12 |
StoppingCriteriaList,
|
| 13 |
TextIteratorStreamer,
|
| 14 |
)
|
| 15 |
-
|
| 16 |
from .chat_utils import Conversation, get_conv_template
|
| 17 |
|
| 18 |
logger = logging.getLogger(__name__)
|
|
@@ -91,6 +91,7 @@ class StoppingCriteriaSub(StoppingCriteria):
|
|
| 91 |
def preprocess(
|
| 92 |
messages: list[dict],
|
| 93 |
processor,
|
|
|
|
| 94 |
):
|
| 95 |
"""
|
| 96 |
Build messages from the conversations and images.
|
|
@@ -110,12 +111,28 @@ def preprocess(
|
|
| 110 |
if "images" in message:
|
| 111 |
per_round_images = message["images"]
|
| 112 |
for image in per_round_images:
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
if 'content' in message:
|
| 120 |
record["content"].append(
|
| 121 |
{
|
|
@@ -148,12 +165,12 @@ def preprocess(
|
|
| 148 |
formatted_answer.count(processor.image_token) == 0
|
| 149 |
), f"there should be no {processor.image_token} in the assistant's reply, but got {messages}"
|
| 150 |
|
| 151 |
-
print(f"messages = {results}")
|
| 152 |
text = processor.apply_chat_template(results, add_generation_prompt=False)
|
| 153 |
-
print(f"raw text = {text}")
|
|
|
|
|
|
|
| 154 |
|
| 155 |
-
image_inputs, video_inputs = processor.process_vision_info(results)
|
| 156 |
-
|
| 157 |
inputs = processor(
|
| 158 |
images=image_inputs,
|
| 159 |
videos=video_inputs,
|
|
@@ -161,6 +178,7 @@ def preprocess(
|
|
| 161 |
return_tensors="pt",
|
| 162 |
padding=True,
|
| 163 |
truncation=True,
|
|
|
|
| 164 |
)
|
| 165 |
return inputs
|
| 166 |
|
|
@@ -176,10 +194,11 @@ def eagle_vl_generate(
|
|
| 176 |
temperature: float = 1.0,
|
| 177 |
top_p: float = 1.0,
|
| 178 |
chunk_size: int = -1,
|
|
|
|
| 179 |
):
|
| 180 |
# convert conversation to inputs
|
| 181 |
print(f"conversations = {conversations}")
|
| 182 |
-
inputs = preprocess(conversations, processor=processor)
|
| 183 |
inputs = inputs.to(model.device)
|
| 184 |
|
| 185 |
return generate(
|
|
@@ -202,7 +221,7 @@ def generate(
|
|
| 202 |
temperature: float = 0,
|
| 203 |
top_p: float = 0.95,
|
| 204 |
stop_words: List[str] = [],
|
| 205 |
-
chunk_size: int = -1
|
| 206 |
):
|
| 207 |
"""Stream the text output from the multimodality model with prompt and image inputs."""
|
| 208 |
tokenizer = processor.tokenizer
|
|
|
|
| 12 |
StoppingCriteriaList,
|
| 13 |
TextIteratorStreamer,
|
| 14 |
)
|
| 15 |
+
from PIL import Image
|
| 16 |
from .chat_utils import Conversation, get_conv_template
|
| 17 |
|
| 18 |
logger = logging.getLogger(__name__)
|
|
|
|
| 91 |
def preprocess(
|
| 92 |
messages: list[dict],
|
| 93 |
processor,
|
| 94 |
+
video_nframes: int = 16,
|
| 95 |
):
|
| 96 |
"""
|
| 97 |
Build messages from the conversations and images.
|
|
|
|
| 111 |
if "images" in message:
|
| 112 |
per_round_images = message["images"]
|
| 113 |
for image in per_round_images:
|
| 114 |
+
if isinstance(image, Image.Image):
|
| 115 |
+
record["content"].append(
|
| 116 |
+
{
|
| 117 |
+
"type": "image",
|
| 118 |
+
"image": image,
|
| 119 |
+
}
|
| 120 |
+
)
|
| 121 |
+
elif isinstance(image, str) and image.endswith((".jpeg", ".jpg", ".png", ".gif")):
|
| 122 |
+
record["content"].append(
|
| 123 |
+
{
|
| 124 |
+
"type": "image",
|
| 125 |
+
"image": image,
|
| 126 |
+
}
|
| 127 |
+
)
|
| 128 |
+
elif isinstance(image, str) and image.endswith((".mp4", ".mov", ".avi", ".webm")):
|
| 129 |
+
record["content"].append(
|
| 130 |
+
{
|
| 131 |
+
"type": "video",
|
| 132 |
+
"video": image,
|
| 133 |
+
"nframes": video_nframes,
|
| 134 |
+
}
|
| 135 |
+
)
|
| 136 |
if 'content' in message:
|
| 137 |
record["content"].append(
|
| 138 |
{
|
|
|
|
| 165 |
formatted_answer.count(processor.image_token) == 0
|
| 166 |
), f"there should be no {processor.image_token} in the assistant's reply, but got {messages}"
|
| 167 |
|
| 168 |
+
# print(f"messages = {results}")
|
| 169 |
text = processor.apply_chat_template(results, add_generation_prompt=False)
|
| 170 |
+
# print(f"raw text = {text}")
|
| 171 |
+
|
| 172 |
+
image_inputs, video_inputs, video_kwargs = processor.process_vision_info(results, return_video_kwargs=True)
|
| 173 |
|
|
|
|
|
|
|
| 174 |
inputs = processor(
|
| 175 |
images=image_inputs,
|
| 176 |
videos=video_inputs,
|
|
|
|
| 178 |
return_tensors="pt",
|
| 179 |
padding=True,
|
| 180 |
truncation=True,
|
| 181 |
+
videos_kwargs=video_kwargs,
|
| 182 |
)
|
| 183 |
return inputs
|
| 184 |
|
|
|
|
| 194 |
temperature: float = 1.0,
|
| 195 |
top_p: float = 1.0,
|
| 196 |
chunk_size: int = -1,
|
| 197 |
+
video_nframes: int = 16,
|
| 198 |
):
|
| 199 |
# convert conversation to inputs
|
| 200 |
print(f"conversations = {conversations}")
|
| 201 |
+
inputs = preprocess(conversations, processor=processor, video_nframes=video_nframes)
|
| 202 |
inputs = inputs.to(model.device)
|
| 203 |
|
| 204 |
return generate(
|
|
|
|
| 221 |
temperature: float = 0,
|
| 222 |
top_p: float = 0.95,
|
| 223 |
stop_words: List[str] = [],
|
| 224 |
+
chunk_size: int = -1
|
| 225 |
):
|
| 226 |
"""Stream the text output from the multimodality model with prompt and image inputs."""
|
| 227 |
tokenizer = processor.tokenizer
|