Spaces:
Running
Running
| import argparse | |
| import gradio as gr | |
| import os | |
| from PIL import Image | |
| import spaces | |
| from eagle_vl.serve.frontend import reload_javascript | |
| from eagle_vl.serve.utils import ( | |
| configure_logger, | |
| pil_to_base64, | |
| parse_ref_bbox, | |
| strip_stop_words, | |
| is_variable_assigned, | |
| ) | |
| from eagle_vl.serve.gradio_utils import ( | |
| cancel_outputing, | |
| delete_last_conversation, | |
| reset_state, | |
| reset_textbox, | |
| transfer_input, | |
| wrap_gen_fn, | |
| ) | |
| from eagle_vl.serve.chat_utils import ( | |
| generate_prompt_with_history, | |
| convert_conversation_to_prompts, | |
| to_gradio_chatbot, | |
| to_gradio_history, | |
| ) | |
| from eagle_vl.serve.inference import eagle_vl_generate, load_model | |
| from eagle_vl.serve.examples import get_examples | |
| TITLE = """<h1 align="left" style="min-width:200px; margin-top:0;">Chat with Eagle2.5-VL </h1>""" | |
| DESCRIPTION_TOP = """<a href="https://github.com/NVlabs/EAGLE" target="_blank">Eagle2.5-VL</a> is a multi-modal LLM that can understand text, images and videos, and generate text""" | |
| DESCRIPTION = """""" | |
| ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
| DEPLOY_MODELS = dict() | |
| logger = configure_logger() | |
| def parse_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model", type=str, default="Eagle2.5-VL-8B-Preview") | |
| parser.add_argument( | |
| "--local-path", | |
| type=str, | |
| default="", | |
| help="huggingface ckpt, optional", | |
| ) | |
| parser.add_argument("--ip", type=str, default="0.0.0.0") | |
| parser.add_argument("--port", type=int, default=7860) | |
| return parser.parse_args() | |
| def fetch_model(model_name: str): | |
| global args, DEPLOY_MODELS | |
| if args.local_path: | |
| model_path = args.local_path | |
| else: | |
| model_path = f"NVEagle/{args.model}" | |
| if model_name in DEPLOY_MODELS: | |
| model_info = DEPLOY_MODELS[model_name] | |
| print(f"{model_name} has been loaded.") | |
| else: | |
| print(f"{model_name} is loading...") | |
| DEPLOY_MODELS[model_name] = load_model(model_path) | |
| print(f"Load {model_name} successfully...") | |
| model_info = DEPLOY_MODELS[model_name] | |
| return model_info | |
| def preview_images(files) -> list[str]: | |
| if files is None: | |
| return [] | |
| image_paths = [] | |
| for file in files: | |
| image_paths.append(file.name) | |
| return image_paths | |
| def get_prompt(conversation) -> str: | |
| """ | |
| Get the prompt for the conversation. | |
| """ | |
| system_prompt = conversation.system_template.format(system_message=conversation.system_message) | |
| return system_prompt | |
| def predict( | |
| text, | |
| images, | |
| chatbot, | |
| history, | |
| top_p, | |
| temperature, | |
| max_generate_length, | |
| max_context_length_tokens, | |
| video_nframes, | |
| chunk_size: int = 512, | |
| ): | |
| """ | |
| Predict the response for the input text and images. | |
| Args: | |
| text (str): The input text. | |
| images (list[PIL.Image.Image]): The input images. | |
| chatbot (list): The chatbot. | |
| history (list): The history. | |
| top_p (float): The top-p value. | |
| temperature (float): The temperature value. | |
| repetition_penalty (float): The repetition penalty value. | |
| max_generate_length (int): The max length tokens. | |
| max_context_length_tokens (int): The max context length tokens. | |
| chunk_size (int): The chunk size. | |
| """ | |
| if images is None: | |
| images = [] | |
| # load images | |
| pil_images = [] | |
| for img_or_file in images: | |
| try: | |
| logger.info(f"img_or_file: {img_or_file}") | |
| # load as pil image | |
| if isinstance(images, Image.Image): | |
| pil_images.append(img_or_file) | |
| elif isinstance(img_or_file, str): | |
| if img_or_file.endswith((".mp4", ".mov", ".avi", ".webm")): | |
| pil_images.append(img_or_file) | |
| else: | |
| image = Image.open(img_or_file.name).convert("RGB") | |
| pil_images.append(image) | |
| except Exception as e: | |
| print(f"Error loading image: {e}") | |
| print("running the prediction function") | |
| try: | |
| logger.info("fetching model") | |
| model, processor = fetch_model(args.model) | |
| logger.info("model fetched") | |
| if text == "": | |
| yield chatbot, history, "Empty context." | |
| return | |
| except KeyError: | |
| logger.info("no model found") | |
| yield [[text, "No Model Found"]], [], "No Model Found" | |
| return | |
| # generate prompt | |
| conversation = generate_prompt_with_history( | |
| text, | |
| pil_images, | |
| history, | |
| processor, | |
| max_length=max_context_length_tokens, | |
| ) | |
| all_conv, last_image = convert_conversation_to_prompts(conversation) | |
| stop_words = conversation.stop_str | |
| gradio_chatbot_output = to_gradio_chatbot(conversation) | |
| full_response = "" | |
| for x in eagle_vl_generate( | |
| conversations=all_conv, | |
| model=model, | |
| processor=processor, | |
| stop_words=stop_words, | |
| max_length=max_generate_length, | |
| temperature=temperature, | |
| top_p=top_p, | |
| video_nframes=video_nframes, | |
| ): | |
| full_response += x | |
| response = strip_stop_words(full_response, stop_words) | |
| conversation.update_last_message(response) | |
| gradio_chatbot_output[-1][1] = response | |
| yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..." | |
| # if last_image is not None: | |
| # vg_image = parse_ref_bbox(response, last_image) | |
| # if vg_image is not None: | |
| # vg_base64 = pil_to_base64(vg_image, "vg", max_size=800, min_size=400) | |
| # gradio_chatbot_output[-1][1] += vg_base64 | |
| # yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..." | |
| logger.info("flushed result to gradio") | |
| if is_variable_assigned("x"): | |
| print( | |
| f"temperature: {temperature}, " | |
| f"top_p: {top_p}, " | |
| f"max_generate_length: {max_generate_length}" | |
| ) | |
| yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success" | |
| def retry( | |
| text, | |
| images, | |
| chatbot, | |
| history, | |
| top_p, | |
| temperature, | |
| max_generate_length, | |
| max_context_length_tokens, | |
| video_nframes, | |
| chunk_size: int = 512, | |
| ): | |
| """ | |
| Retry the response for the input text and images. | |
| """ | |
| if len(history) == 0: | |
| yield (chatbot, history, "Empty context") | |
| return | |
| chatbot.pop() | |
| history.pop() | |
| text = history.pop()[-1] | |
| if type(text) is tuple: | |
| text, _ = text | |
| yield from predict( | |
| text, | |
| images, | |
| chatbot, | |
| history, | |
| top_p, | |
| temperature, | |
| max_generate_length, | |
| max_context_length_tokens, | |
| video_nframes, | |
| chunk_size, | |
| ) | |
| def build_demo(args: argparse.Namespace) -> gr.Blocks: | |
| with gr.Blocks(theme=gr.themes.Soft(), delete_cache=(1800, 1800)) as demo: | |
| history = gr.State([]) | |
| input_text = gr.State() | |
| input_images = gr.State() | |
| with gr.Row(): | |
| gr.HTML(TITLE) | |
| status_display = gr.Markdown("Success", elem_id="status_display") | |
| gr.Markdown(DESCRIPTION_TOP) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=4): | |
| with gr.Row(): | |
| chatbot = gr.Chatbot( | |
| elem_id="Eagle2.5-VL-8B-chatbot", | |
| show_share_button=True, | |
| bubble_full_width=False, | |
| height=600, | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=4): | |
| text_box = gr.Textbox(show_label=False, placeholder="Enter text", container=False) | |
| with gr.Column(min_width=70): | |
| submit_btn = gr.Button("Send") | |
| with gr.Column(min_width=70): | |
| cancel_btn = gr.Button("Stop") | |
| with gr.Row(): | |
| empty_btn = gr.Button("🧹 New Conversation") | |
| retry_btn = gr.Button("🔄 Regenerate") | |
| del_last_btn = gr.Button("🗑️ Remove Last Turn") | |
| with gr.Column(): | |
| # add note no more than 2 images once | |
| gr.Markdown("Note: you can upload images or videos!") | |
| upload_images = gr.Files(file_types=["image", "video"], show_label=True) | |
| gallery = gr.Gallery(columns=[3], height="200px", show_label=True) | |
| upload_images.change(preview_images, inputs=upload_images, outputs=gallery) | |
| # Parameter Setting Tab for control the generation parameters | |
| with gr.Tab(label="Parameter Setting"): | |
| top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p") | |
| temperature = gr.Slider( | |
| minimum=0, maximum=1.0, value=0.8, step=0.1, interactive=True, label="Temperature" | |
| ) | |
| max_generate_length = gr.Slider( | |
| minimum=512, maximum=8192, value=4096, step=64, interactive=True, label="Max Generate Length" | |
| ) | |
| max_context_length_tokens = gr.Slider( | |
| minimum=512, maximum=65536, value=16384, step=64, interactive=True, label="Max Context Length Tokens" | |
| ) | |
| video_nframes = gr.Slider( | |
| minimum=1, maximum=128, value=16, step=1, interactive=True, label="Video Nframes" | |
| ) | |
| show_images = gr.HTML(visible=False) | |
| gr.Examples( | |
| examples=get_examples(ROOT_DIR), | |
| inputs=[upload_images, show_images, text_box], | |
| ) | |
| gr.Markdown() | |
| input_widgets = [ | |
| input_text, | |
| input_images, | |
| chatbot, | |
| history, | |
| top_p, | |
| temperature, | |
| max_generate_length, | |
| max_context_length_tokens, | |
| video_nframes | |
| ] | |
| output_widgets = [chatbot, history, status_display] | |
| transfer_input_args = dict( | |
| fn=transfer_input, | |
| inputs=[text_box, upload_images], | |
| outputs=[input_text, input_images, text_box, upload_images, submit_btn], | |
| show_progress=True, | |
| ) | |
| predict_args = dict(fn=predict, inputs=input_widgets, outputs=output_widgets, show_progress=True) | |
| retry_args = dict(fn=retry, inputs=input_widgets, outputs=output_widgets, show_progress=True) | |
| reset_args = dict(fn=reset_textbox, inputs=[], outputs=[text_box, status_display]) | |
| predict_events = [ | |
| text_box.submit(**transfer_input_args).then(**predict_args), | |
| submit_btn.click(**transfer_input_args).then(**predict_args), | |
| ] | |
| empty_btn.click(reset_state, outputs=output_widgets, show_progress=True) | |
| empty_btn.click(**reset_args) | |
| retry_btn.click(**retry_args) | |
| del_last_btn.click(delete_last_conversation, [chatbot, history], output_widgets, show_progress=True) | |
| cancel_btn.click(cancel_outputing, [], [status_display], cancels=predict_events) | |
| demo.title = "Eagle2.5-VL-8B Chatbot" | |
| return demo | |
| def main(args: argparse.Namespace): | |
| demo = build_demo(args) | |
| reload_javascript() | |
| # concurrency_count=CONCURRENT_COUNT, max_size=MAX_EVENTS | |
| favicon_path = os.path.join("eagle_vl/serve/assets/favicon.ico") | |
| demo.queue().launch( | |
| favicon_path=favicon_path, | |
| server_name=args.ip, | |
| server_port=args.port, | |
| ) | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) | |