|
|
|
|
|
function MnistRNN() { |
|
var model = this; |
|
|
|
this.weights_meta = { |
|
'(MnistNet).dropout(Dropout).keygen(Generator)._key': [[1973249, 1973251], [2]], |
|
'(MnistNet).lstm_core(LSTMCore).fc(Linear).b': [[266496, 268544], [2048]], |
|
'(MnistNet).lstm_core(LSTMCore).fc(Linear).w': [[268544, 1841408], [768, 2048]], |
|
'(MnistNet).output_head(Linear).b': [[1841408, 1841665], [257]], |
|
'(MnistNet).output_head(Linear).w': [[1841665, 1973249], [512, 257]], |
|
'(MnistNet).pos_embed(Embed).embeddings': [[0, 200704], [784, 256]], |
|
'(MnistNet).value_embed(Embed).embeddings': [[200704, 266496], [257, 256]] |
|
}; |
|
|
|
this.is_model_ready = false; |
|
|
|
this.embed_lookup = function(index, weights) { |
|
return tf.slice(weights, [index], [1]); |
|
}; |
|
|
|
this.pos = 0; |
|
this.state = null; |
|
this.start_token = 256; |
|
this.hidden_size = this.weights_meta['(MnistNet).lstm_core(LSTMCore).fc(Linear).b'][1][0] / 4; |
|
|
|
this.initialize_state = function() { |
|
this.pos = 0; |
|
this.token = this.start_token; |
|
var hidden = tf.zeros([1, this.hidden_size]); |
|
var cell = tf.zeros([1, this.hidden_size]); |
|
this.state = [hidden, cell]; |
|
}; |
|
|
|
this.lstm_core = function(inputs, state, weights) { |
|
const [hidden, cell] = state; |
|
const [w, b] = weights; |
|
const i_and_h =tf.concat([inputs, hidden], 1); |
|
const gated = tf.add(tf.matMul(i_and_h, w), b); |
|
const [i, g, f, o] = tf.split(gated, 4, 1); |
|
const f_ = tf.sigmoid(tf.add(f, 1.)); |
|
const i_ = tf.sigmoid(i); |
|
const g_ = tf.tanh(g); |
|
const c = tf.add( |
|
tf.mul(i_, g_), |
|
tf.mul(cell, f_) |
|
); |
|
const h = tf.mul( |
|
tf.sigmoid(o), |
|
tf.tanh(c) |
|
); |
|
return [h, c]; |
|
}; |
|
|
|
this.step = function() { |
|
const [token, h, c] = tf.tidy( function() { |
|
const lstm_b = model.MODEL_WEIGHTS['(MnistNet).lstm_core(LSTMCore).fc(Linear).b']; |
|
const lstm_w = model.MODEL_WEIGHTS['(MnistNet).lstm_core(LSTMCore).fc(Linear).w']; |
|
const output_b = model.MODEL_WEIGHTS['(MnistNet).output_head(Linear).b']; |
|
const output_w = model.MODEL_WEIGHTS['(MnistNet).output_head(Linear).w']; |
|
const pos_embed = model.MODEL_WEIGHTS['(MnistNet).pos_embed(Embed).embeddings']; |
|
const value_embed = model.MODEL_WEIGHTS['(MnistNet).value_embed(Embed).embeddings']; |
|
const v = model.embed_lookup(model.token, value_embed); |
|
const p = model.embed_lookup(model.pos, pos_embed); |
|
const x = tf.add(v, p); |
|
const [h, c] = model.lstm_core(x, model.state, [lstm_w, lstm_b]); |
|
tf.dispose(model.state[0]); |
|
tf.dispose(model.state[1]); |
|
const logits = tf.add( |
|
tf.matMul(h, output_w), |
|
output_b |
|
); |
|
const token = tf.multinomial(logits, 1).dataSync()[0]; |
|
|
|
return [token, h, c]; |
|
}); |
|
|
|
this.clean_memory(); |
|
this.token = token; |
|
this.state = [h, c]; |
|
canvas.plot_xyc(this.pos, token); |
|
this.pos = this.pos + 1; |
|
}; |
|
|
|
this.MODEL_WEIGHTS = {}; |
|
this.clean_memory = function() { |
|
tf.dispose(model.state[0]); |
|
tf.dispose(model.state[1]); |
|
}; |
|
|
|
this.loop = function() { |
|
this.step(); |
|
if (this.pos >=28*28) { |
|
setTimeout(function(){ |
|
model.clean_memory(); |
|
model.initialize_state(); |
|
canvas.plot_grid(); |
|
model.loop(); |
|
}, 3000); |
|
} else { |
|
canvas.plot_xyc(this.pos, 255); |
|
setTimeout(function(){model.loop();}, 0); |
|
} |
|
}; |
|
|
|
this.load_model_weights = function() { |
|
var req = new XMLHttpRequest(); |
|
req.open("GET", "weights.bin", true); |
|
console.log('loading weights...'); |
|
req.responseType = "arraybuffer"; |
|
var this_ = this; |
|
req.onload = function (event) { |
|
var buff = req.response; |
|
if (buff) { |
|
var W = new Float32Array(buff); |
|
for(var k in this_.weights_meta) { |
|
info = this_.weights_meta[k]; |
|
offset = info[0]; |
|
shape = info[1]; |
|
this_.MODEL_WEIGHTS[k] = tf.tensor(W.subarray(offset[0], offset[1]), shape); |
|
} |
|
this_.is_model_ready = true; |
|
} else { |
|
alert('Error while loading weights...'); |
|
} |
|
}; |
|
req.send(null); |
|
}; |
|
|
|
this.load_when_ready = function() { |
|
tf.ready().then( function() { |
|
tf.enableProdMode(); |
|
console.log('tf is ready'); |
|
model.initialize_state() |
|
model.load_model_weights(); |
|
console.log(model.hidden_size); |
|
}); |
|
}; |
|
} |
|
|
|
|
|
function MnistCanvas() { |
|
var canvas = document.getElementById("mnist-canvas"); |
|
canvas.width = window.innerWidth; |
|
canvas.height = window.innerHeight; |
|
context=canvas.getContext('2d'); |
|
context.translate(canvas.width/2,canvas.height/2); |
|
var scale = Math.floor(Math.min(canvas.width, canvas.height) / (28*2) ) * 28; |
|
console.log(scale); |
|
context.scale(scale, scale) |
|
context.imageSmoothingEnabled = false; |
|
|
|
this.clear = function() { |
|
context.clearRect(-1, -1, 2., 2.); |
|
context.fillStyle = "rgb(0, 0, 0)"; |
|
context.fillRect(-10, -10, 20, 20); |
|
}; |
|
|
|
this.plot_grid = function() { |
|
for (var i=0; i< 28*28; i++) this.plot_xyc(i, 0); |
|
}; |
|
|
|
this.plot_xyc = function (pos, color) { |
|
color = Math.max(20, color); |
|
var step = 1. / 28; |
|
var y = Math.floor(pos / 28 - 14) * step; |
|
var x = (pos % 28 - 14) * step; |
|
context.fillStyle = "rgb(0, " + color + ", 0)"; |
|
context.fillRect(x, y, step, step); |
|
context.strokeStyle = "rgb(0, 0, 0)"; |
|
context.lineWidth = 0.008; |
|
context.strokeRect(x, y, step, step); |
|
}; |
|
|
|
this.loading_animation = function() { |
|
var counter = 0; |
|
var this_ = this; |
|
this_.plot_grid(); |
|
|
|
var draw = function() { |
|
if (model.is_model_ready) { |
|
console.log('stopping animation.'); |
|
model.loop(); |
|
return; |
|
} |
|
if (counter >= 28*28) { |
|
this_.plot_grid(); |
|
counter = 0; |
|
} |
|
this_.plot_xyc(counter, 255); |
|
if (counter < 28*28-1) { |
|
this_.plot_xyc(counter+1, 255); |
|
} |
|
counter = counter+1; |
|
window.requestAnimationFrame(draw); |
|
}; |
|
window.requestAnimationFrame(draw); |
|
}; |
|
} |
|
|
|
|
|
var model = null; |
|
var canvas = null; |
|
|
|
window.onload = function() { |
|
setTimeout(function() { |
|
model = new MnistRNN(); |
|
canvas = new MnistCanvas(); |
|
console.log("init..."); |
|
canvas.clear(); |
|
canvas.loading_animation(); |
|
model.load_when_ready(); |
|
}, 500); |
|
}; |
|
|