Spaces:
Running
on
Zero
Running
on
Zero
liuyang
commited on
Commit
·
f800f63
1
Parent(s):
aa984fe
Enhance speaker assignment in transcription: Introduced interval overlap calculations and smoothing techniques for improved accuracy in speaker labeling. Added methods for determining dominant speakers and stabilizing segment boundaries.
Browse files
app.py
CHANGED
@@ -568,41 +568,114 @@ class WhisperTranscriber:
|
|
568 |
"""Assign speakers to words and segments based on overlap with diarization segments."""
|
569 |
if not diarization_segments:
|
570 |
return transcription_results
|
571 |
-
#
|
572 |
def speaker_at(t: float):
|
573 |
-
for
|
574 |
-
if
|
575 |
-
return
|
576 |
# if not inside, return closest segment's speaker
|
577 |
closest = None
|
578 |
-
|
579 |
-
for
|
580 |
-
if t <
|
581 |
-
d =
|
582 |
-
elif t >
|
583 |
-
d = t -
|
584 |
else:
|
585 |
d = 0.0
|
586 |
-
if d <
|
587 |
-
|
588 |
-
closest =
|
589 |
return closest["speaker"] if closest else "SPEAKER_00"
|
590 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
591 |
for seg in transcription_results:
|
592 |
-
# Assign per-word speakers
|
593 |
if seg.get("words"):
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
w["
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
603 |
else:
|
604 |
-
|
605 |
-
seg["speaker"] =
|
606 |
return transcription_results
|
607 |
|
608 |
def group_segments_by_speaker(self, segments, max_gap=1.0, max_duration=30.0):
|
|
|
568 |
"""Assign speakers to words and segments based on overlap with diarization segments."""
|
569 |
if not diarization_segments:
|
570 |
return transcription_results
|
571 |
+
# Helper: find the diarization speaker active at time t, or closest
|
572 |
def speaker_at(t: float):
|
573 |
+
for dseg in diarization_segments:
|
574 |
+
if float(dseg["start"]) <= t < float(dseg["end"]):
|
575 |
+
return dseg["speaker"]
|
576 |
# if not inside, return closest segment's speaker
|
577 |
closest = None
|
578 |
+
best_dist = float("inf")
|
579 |
+
for dseg in diarization_segments:
|
580 |
+
if t < float(dseg["start"]):
|
581 |
+
d = float(dseg["start"]) - t
|
582 |
+
elif t > float(dseg["end"]):
|
583 |
+
d = t - float(dseg["end"])
|
584 |
else:
|
585 |
d = 0.0
|
586 |
+
if d < best_dist:
|
587 |
+
best_dist = d
|
588 |
+
closest = dseg
|
589 |
return closest["speaker"] if closest else "SPEAKER_00"
|
590 |
|
591 |
+
# Helper: overlap length between two intervals
|
592 |
+
def interval_overlap(a_start: float, a_end: float, b_start: float, b_end: float) -> float:
|
593 |
+
return max(0.0, min(a_end, b_end) - max(a_start, b_start))
|
594 |
+
|
595 |
+
# Helper: choose speaker for an interval by maximum overlap with diarization
|
596 |
+
def best_speaker_for_interval(start_t: float, end_t: float) -> str:
|
597 |
+
best_spk = None
|
598 |
+
best_ov = -1.0
|
599 |
+
for dseg in diarization_segments:
|
600 |
+
ov = interval_overlap(float(start_t), float(end_t), float(dseg["start"]), float(dseg["end"]))
|
601 |
+
if ov > best_ov:
|
602 |
+
best_ov = ov
|
603 |
+
best_spk = dseg["speaker"]
|
604 |
+
if best_ov > 0.0 and best_spk is not None:
|
605 |
+
return best_spk
|
606 |
+
# fallback to nearest by midpoint
|
607 |
+
mid = (float(start_t) + float(end_t)) / 2.0
|
608 |
+
return speaker_at(mid)
|
609 |
+
|
610 |
for seg in transcription_results:
|
611 |
+
# Assign per-word speakers using overlap, then smooth and stabilize boundaries
|
612 |
if seg.get("words"):
|
613 |
+
words = seg["words"]
|
614 |
+
# 1) Initial assignment by overlap
|
615 |
+
for w in words:
|
616 |
+
w_start = float(w["start"])
|
617 |
+
w_end = float(w["end"])
|
618 |
+
w["speaker"] = best_speaker_for_interval(w_start, w_end)
|
619 |
+
|
620 |
+
# 2) Small median filter (window=3) to fix isolated outliers
|
621 |
+
if len(words) >= 3:
|
622 |
+
smoothed = [words[i]["speaker"] for i in range(len(words))]
|
623 |
+
for i in range(1, len(words) - 1):
|
624 |
+
prev_spk = words[i - 1]["speaker"]
|
625 |
+
curr_spk = words[i]["speaker"]
|
626 |
+
next_spk = words[i + 1]["speaker"]
|
627 |
+
if prev_spk == next_spk and curr_spk != prev_spk:
|
628 |
+
smoothed[i] = prev_spk
|
629 |
+
for i in range(len(words)):
|
630 |
+
words[i]["speaker"] = smoothed[i]
|
631 |
+
|
632 |
+
# 3) Determine dominant speaker by summed word durations
|
633 |
+
speaker_dur = {}
|
634 |
+
total_word_dur = 0.0
|
635 |
+
for w in words:
|
636 |
+
dur = max(0.0, float(w["end"]) - float(w["start"]))
|
637 |
+
total_word_dur += dur
|
638 |
+
spk = w.get("speaker", "SPEAKER_00")
|
639 |
+
speaker_dur[spk] = speaker_dur.get(spk, 0.0) + dur
|
640 |
+
if speaker_dur:
|
641 |
+
dominant_speaker = max(speaker_dur.items(), key=lambda kv: kv[1])[0]
|
642 |
+
else:
|
643 |
+
dominant_speaker = speaker_at((float(seg["start"]) + float(seg["end"])) / 2.0)
|
644 |
+
|
645 |
+
# 4) Boundary stabilization: relabel tiny prefix/suffix runs to dominant
|
646 |
+
seg_duration = max(1e-6, float(seg["end"]) - float(seg["start"]))
|
647 |
+
max_boundary_sec = 0.5 # hard cap for how much to relabel at edges
|
648 |
+
max_boundary_frac = 0.2 # or up to 20% of the segment duration
|
649 |
+
|
650 |
+
# prefix
|
651 |
+
prefix_dur = 0.0
|
652 |
+
prefix_count = 0
|
653 |
+
for w in words:
|
654 |
+
if w.get("speaker") == dominant_speaker:
|
655 |
+
break
|
656 |
+
prefix_dur += max(0.0, float(w["end"]) - float(w["start"]))
|
657 |
+
prefix_count += 1
|
658 |
+
if prefix_count > 0 and prefix_dur <= min(max_boundary_sec, max_boundary_frac * seg_duration):
|
659 |
+
for i in range(prefix_count):
|
660 |
+
words[i]["speaker"] = dominant_speaker
|
661 |
+
|
662 |
+
# suffix
|
663 |
+
suffix_dur = 0.0
|
664 |
+
suffix_count = 0
|
665 |
+
for w in reversed(words):
|
666 |
+
if w.get("speaker") == dominant_speaker:
|
667 |
+
break
|
668 |
+
suffix_dur += max(0.0, float(w["end"]) - float(w["start"]))
|
669 |
+
suffix_count += 1
|
670 |
+
if suffix_count > 0 and suffix_dur <= min(max_boundary_sec, max_boundary_frac * seg_duration):
|
671 |
+
for i in range(len(words) - suffix_count, len(words)):
|
672 |
+
words[i]["speaker"] = dominant_speaker
|
673 |
+
|
674 |
+
# 5) Final segment speaker
|
675 |
+
seg["speaker"] = dominant_speaker
|
676 |
else:
|
677 |
+
# No word timings: choose by overlap with diarization over the whole segment
|
678 |
+
seg["speaker"] = best_speaker_for_interval(float(seg["start"]), float(seg["end"]))
|
679 |
return transcription_results
|
680 |
|
681 |
def group_segments_by_speaker(self, segments, max_gap=1.0, max_duration=30.0):
|