liuyang
model control
caef0e2
import spaces
import boto3
from botocore.exceptions import NoCredentialsError, ClientError
from botocore.client import Config
import os, pathlib
CACHE_ROOT = "/home/user/app/cache" # any folder you own
os.environ.update(
TORCH_HOME = f"{CACHE_ROOT}/torch",
XDG_CACHE_HOME = f"{CACHE_ROOT}/xdg", # torch fallback
PYANNOTE_CACHE = f"{CACHE_ROOT}/pyannote",
HF_HOME = f"{CACHE_ROOT}/huggingface",
TRANSFORMERS_CACHE= f"{CACHE_ROOT}/transformers",
MPLCONFIGDIR = f"{CACHE_ROOT}/mpl",
)
INITIAL_PROMPT = '''
Use normal punctuation; end sentences properly.
'''
# make sure the directories exist
for path in os.environ.values():
pathlib.Path(path).mkdir(parents=True, exist_ok=True)
import gradio as gr
import torch
import torchaudio
import numpy as np
import pandas as pd
import time
import datetime
import re
import subprocess
import os
import tempfile
import spaces
from faster_whisper import WhisperModel, BatchedInferencePipeline
from faster_whisper.vad import VadOptions
import requests
import base64
from pyannote.audio import Pipeline, Inference, Model
from pyannote.core import Segment
import os, sys, importlib.util, pathlib, ctypes, tempfile, wave, math
import json
import webrtcvad
spec = importlib.util.find_spec("nvidia.cudnn")
if spec is None:
sys.exit("❌ nvidia-cudnn-cu12 wheel not found. Run: pip install nvidia-cudnn-cu12")
cudnn_dir = pathlib.Path(spec.origin).parent / "lib"
cnn_so = cudnn_dir / "libcudnn_cnn.so.9"
try:
ctypes.CDLL(cnn_so, mode=ctypes.RTLD_GLOBAL)
print(f"βœ“ Pre-loaded {cnn_so}")
except OSError as e:
sys.exit(f"❌ Could not load {cnn_so} : {e}")
S3_ENDPOINT = os.getenv("S3_ENDPOINT")
S3_ACCESS_KEY = os.getenv("S3_ACCESS_KEY")
S3_SECRET_KEY = os.getenv("S3_SECRET_KEY")
# Function to upload file to Cloudflare R2
def upload_data_to_r2(data, bucket_name, object_name, content_type='application/octet-stream'):
"""
Upload data directly to a Cloudflare R2 bucket.
:param data: Data to upload (bytes or string).
:param bucket_name: Name of the R2 bucket.
:param object_name: Name of the object to save in the bucket.
:param content_type: MIME type of the data.
:return: True if data was uploaded, else False.
"""
try:
# Convert string to bytes if necessary
if isinstance(data, str):
data = data.encode('utf-8')
# Initialize a session using Cloudflare R2 credentials
session = boto3.session.Session()
s3 = session.client('s3',
endpoint_url=f'https://{S3_ENDPOINT}',
aws_access_key_id=S3_ACCESS_KEY,
aws_secret_access_key=S3_SECRET_KEY,
config = Config(s3={"addressing_style": "virtual", 'payload_signing_enabled': False}, signature_version='v4',
request_checksum_calculation='when_required',
response_checksum_validation='when_required',),
)
# Upload the data to R2 bucket
s3.put_object(
Bucket=bucket_name,
Key=object_name,
Body=data,
ContentType=content_type,
ContentLength=len(data), # make length explicit to avoid streaming
)
print(f"Data uploaded to R2 bucket '{bucket_name}' as '{object_name}'")
return True
except NoCredentialsError:
print("Credentials not available")
return False
except ClientError as e:
print(f"Failed to upload data to R2 bucket: {e}")
return False
except Exception as e:
print(f"An unexpected error occurred: {e}")
return False
from huggingface_hub import snapshot_download
MODEL_REPO = "deepdml/faster-whisper-large-v3-turbo-ct2" # CT2 format
LOCAL_DIR = f"{CACHE_ROOT}/whisper_turbo"
# -----------------------------------------------------------------------------
# Audio preprocess helper (from input_and_preprocess rule)
# -----------------------------------------------------------------------------
TRIM_THRESHOLD_MS = 10_000 # 10 seconds
DEFAULT_PAD_MS = 250 # safety context around detected speech
FRAME_MS = 30 # VAD frame
HANG_MS = 240 # hangover (keep speech "on" after silence)
VAD_LEVEL = 2 # 0-3
def _decode_chunk_to_pcm(task: dict) -> bytes:
"""Use ffmpeg to decode the chunk to s16le mono @ 16k PCM bytes."""
src = task["source_uri"]
ing = task["ingest_recipe"]
seek = task["ffmpeg_seek"]
cmd = [
"ffmpeg", "-nostdin", "-hide_banner", "-v", "error",
"-ss", f"{max(0.0, float(seek['pre_ss_sec'])):.3f}",
"-i", src,
"-map", "0:a:0",
"-ss", f"{float(seek['post_ss_sec']):.2f}",
"-t", f"{float(seek['t_sec']):.3f}",
]
# Optional L/R extraction
if ing.get("channel_extract_filter"):
cmd += ["-af", ing["channel_extract_filter"]]
# Force mono 16k s16le to stdout
cmd += ["-ar", "16000", "-ac", "1", "-c:a", "pcm_s16le", "-f", "s16le", "pipe:1"]
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
pcm, err = p.communicate()
if p.returncode != 0:
raise RuntimeError(f"ffmpeg failed: {err.decode('utf-8', 'ignore')}")
return pcm
def _find_head_tail_speech_ms(
pcm: bytes,
sr: int = 16000,
frame_ms: int = FRAME_MS,
vad_level: int = VAD_LEVEL,
hang_ms: int = HANG_MS,
):
"""Return (first_ms, last_ms) speech boundaries using webrtcvad with hangover."""
if not pcm:
return None, None
vad = webrtcvad.Vad(int(vad_level))
bpf = 2 # bytes per sample (s16)
samples_per_ms = sr // 1000 # 16
bytes_per_frame = samples_per_ms * bpf * frame_ms
n_frames = len(pcm) // bytes_per_frame
if n_frames == 0:
return None, None
first_ms, last_ms = None, None
t_ms = 0
in_speech = False
silence_run = 0
view = memoryview(pcm)[: n_frames * bytes_per_frame]
for i in range(n_frames):
frame = view[i * bytes_per_frame : (i + 1) * bytes_per_frame]
if vad.is_speech(frame, sr):
if first_ms is None:
first_ms = t_ms
in_speech = True
silence_run = 0
else:
if in_speech:
silence_run += frame_ms
if silence_run >= hang_ms:
last_ms = t_ms - (silence_run - hang_ms)
in_speech = False
silence_run = 0
t_ms += frame_ms
if in_speech:
last_ms = t_ms
return first_ms, last_ms
def _write_wav(path: str, pcm: bytes, sr: int = 16000):
os.makedirs(os.path.dirname(path), exist_ok=True)
with wave.open(path, "wb") as w:
w.setnchannels(1)
w.setsampwidth(2) # s16
w.setframerate(sr)
w.writeframes(pcm)
def prepare_and_save_audio_for_model(task: dict, out_dir: str) -> dict:
"""
1) Decode chunk to mono 16k PCM.
2) Run VAD to locate head/tail silence.
3) Trim only if head or tail >= 10s.
4) Save the (possibly trimmed) WAV to local file.
5) Return timing metadata, including 'trimmed_start_ms' to preserve global timestamps.
"""
# 0) Names & constants
sr = 16000
bpf = 2
samples_per_ms = sr // 1000
def bytes_from_ms(ms: int) -> int:
return int(ms * samples_per_ms) * bpf
ch = task["channel"]
ck = task["chunk"]
job = task.get("job_id", "job")
idx = str(ck["idx"])
# 1) Decode chunk
pcm = _decode_chunk_to_pcm(task)
planned_dur_ms = int(ck["dur_ms"])
# 2) VAD head/tail detection
first_ms, last_ms = _find_head_tail_speech_ms(pcm, sr=sr)
head_sil_ms = int(first_ms) if first_ms is not None else planned_dur_ms
tail_sil_ms = int(planned_dur_ms - last_ms) if last_ms is not None else planned_dur_ms
# 3) Decide trimming (only if head or tail >= 10s)
trim_applied = False
eff_start_ms = 0
eff_end_ms = planned_dur_ms
trimmed_pcm = pcm
if (head_sil_ms >= TRIM_THRESHOLD_MS) or (tail_sil_ms >= TRIM_THRESHOLD_MS):
# If no speech found at all, mark skip
if first_ms is None or last_ms is None or last_ms <= first_ms:
out_wav_path = os.path.join(out_dir, f"{job}_{ch}_{idx}_nospeech.wav")
_write_wav(out_wav_path, b"", sr)
return {
"out_wav_path": out_wav_path,
"sr": sr,
"trim_applied": False,
"trimmed_start_ms": 0,
"head_silence_ms": head_sil_ms,
"tail_silence_ms": tail_sil_ms,
"effective_start_ms": 0,
"effective_dur_ms": 0,
"abs_start_ms": ck["global_offset_ms"],
"chunk_idx": idx,
"channel": ch,
"skip": True,
}
# Apply padding & slice
start_ms = max(0, int(first_ms) - DEFAULT_PAD_MS)
end_ms = min(planned_dur_ms, int(last_ms) + DEFAULT_PAD_MS)
if end_ms > start_ms:
eff_start_ms = start_ms
eff_end_ms = end_ms
trimmed_pcm = pcm[bytes_from_ms(start_ms) : bytes_from_ms(end_ms)]
trim_applied = True
# 4) Write WAV to local file (trimmed or original)
tag = "trim" if trim_applied else "full"
out_wav_path = os.path.join(out_dir, f"{job}_{ch}_{idx}_{tag}.wav")
_write_wav(out_wav_path, trimmed_pcm, sr)
# 5) Return metadata
return {
"out_wav_path": out_wav_path,
"sr": sr,
"trim_applied": trim_applied,
"trimmed_start_ms": eff_start_ms if trim_applied else 0,
"head_silence_ms": head_sil_ms,
"tail_silence_ms": tail_sil_ms,
"effective_start_ms": eff_start_ms,
"effective_dur_ms": eff_end_ms - eff_start_ms,
"abs_start_ms": int(ck["global_offset_ms"]) + eff_start_ms,
"chunk_idx": idx,
"channel": ch,
"job_id": job,
"skip": False if (trim_applied or len(pcm) > 0) else True,
}
# Download once; later runs are instant
snapshot_download(
repo_id=MODEL_REPO,
local_dir=LOCAL_DIR,
local_dir_use_symlinks=True, # saves disk space
resume_download=True
)
model_cache_path = LOCAL_DIR # <‑‑ this is what we pass to WhisperModel
# Lazy global holder ----------------------------------------------------------
_whisper = None
_batched_whisper = None
_diarizer = None
_embedder = None
# Create global diarization pipeline
try:
print("Loading diarization model...")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision('high')
_diarizer = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=os.getenv("HF_TOKEN"),
).to(torch.device("cuda"))
print("Diarization model loaded successfully")
except Exception as e:
import traceback
traceback.print_exc()
print(f"Could not load diarization model: {e}")
_diarizer = None
@spaces.GPU # GPU is guaranteed to exist *inside* this function
def _load_models():
global _whisper, _batched_whisper, _diarizer
if _whisper is None:
print("Loading Whisper model...")
_whisper = WhisperModel(
model_cache_path,
device="cuda",
compute_type="float16",
)
# Create batched inference pipeline for improved performance
_batched_whisper = BatchedInferencePipeline(model=_whisper)
print("Whisper model and batched pipeline loaded successfully")
return _whisper, _batched_whisper, _diarizer
# -----------------------------------------------------------------------------
class WhisperTranscriber:
def __init__(self):
# do **not** create the models here!
pass
def preprocess_from_task_json(self, task_json: str) -> dict:
"""Parse task JSON and run prepare_and_save_audio_for_model, returning metadata."""
try:
task = json.loads(task_json)
except Exception as e:
raise RuntimeError(f"Invalid JSON: {e}")
out_dir = os.path.join(CACHE_ROOT, "preprocessed")
os.makedirs(out_dir, exist_ok=True)
meta = prepare_and_save_audio_for_model(task, out_dir)
return meta
@spaces.GPU # each call gets a GPU slice
def transcribe_full_audio(self, audio_path, language=None, translate=False, prompt=None, batch_size=16, base_offset_s: float = 0.0):
"""Transcribe the entire audio file without speaker diarization using batched inference"""
whisper, batched_whisper, _ = _load_models() # models live on the GPU
print(f"Transcribing full audio with batch size {batch_size}...")
start_time = time.time()
# Prepare options for batched inference
options = dict(
language=language,
beam_size=5,
vad_filter=True, # VAD is enabled by default for batched transcription
vad_parameters=VadOptions(
max_speech_duration_s=whisper.feature_extractor.chunk_length,
min_speech_duration_ms=150, # ignore ultra-short blips
min_silence_duration_ms=150, # split on short Mandarin pauses (if supported) speech_pad_ms=100,
threshold=0.25,
neg_threshold=0.2,
),
word_timestamps=True,
initial_prompt=prompt,
condition_on_previous_text=False, # avoid runaway context
language_detection_segments=1,
task="translate" if translate else "transcribe",
)
if batch_size > 1:
# Use batched inference for better performance
segments, transcript_info = batched_whisper.transcribe(
audio_path,
batch_size=batch_size,
**options
)
else:
segments, transcript_info = whisper.transcribe(
audio_path,
**options
)
segments = list(segments)
detected_language = transcript_info.language
print("Detected language: ", detected_language, "segments: ", len(segments))
# Process segments
results = []
for seg in segments:
# Create result entry with detailed format
words_list = []
if seg.words:
for word in seg.words:
words_list.append({
"start": float(word.start) + float(base_offset_s),
"end": float(word.end) + float(base_offset_s),
"word": word.word,
"probability": word.probability,
"speaker": "SPEAKER_00" # No speaker identification in full transcription
})
results.append({
"start": float(seg.start) + float(base_offset_s),
"end": float(seg.end) + float(base_offset_s),
"text": seg.text,
"speaker": "SPEAKER_00", # Single speaker assumption
"avg_logprob": seg.avg_logprob,
"words": words_list,
"duration": float(seg.end - seg.start)
})
transcription_time = time.time() - start_time
print(f"Full audio transcribed in {transcription_time:.2f} seconds using batch size {batch_size}")
#print(results)
return results, detected_language
# Removed audio cutting; transcription is done once on the full (preprocessed) audio
@spaces.GPU # each call gets a GPU slice
# Removed segment-wise transcription; using single full-audio transcription
@spaces.GPU # each call gets a GPU slice
def perform_diarization(self, audio_path, num_speakers=None, base_offset_s: float = 0.0):
"""Perform speaker diarization; return segments with global timestamps and per-speaker embeddings."""
_, _, diarizer = _load_models() # models live on the GPU
if diarizer is None:
print("Diarization model not available, creating single speaker segment")
# Load audio to get duration
waveform, sample_rate = torchaudio.load(audio_path)
duration = waveform.shape[1] / sample_rate
# Try to compute a single-speaker embedding
speaker_embeddings = {}
try:
embedder = self._load_embedder()
# Provide waveform as (channel, time) and pad if too short
min_embed_duration_sec = 3.0
min_samples = int(min_embed_duration_sec * sample_rate)
if waveform.shape[1] < min_samples:
pad_len = min_samples - waveform.shape[1]
pad = torch.zeros(waveform.shape[0], pad_len, dtype=waveform.dtype, device=waveform.device)
waveform = torch.cat([waveform, pad], dim=1)
emb = embedder({"waveform": waveform, "sample_rate": sample_rate})
speaker_embeddings["SPEAKER_00"] = emb.squeeze().tolist()
except Exception:
pass
return [{
"start": 0.0 + float(base_offset_s),
"end": duration + float(base_offset_s),
"speaker": "SPEAKER_00"
}], 1, speaker_embeddings
print("Starting diarization...")
start_time = time.time()
# Load audio for diarization
waveform, sample_rate = torchaudio.load(audio_path)
# Perform diarization
diarization = diarizer(
{"waveform": waveform, "sample_rate": sample_rate},
num_speakers=num_speakers,
)
# Convert to list format
diarize_segments = []
diarization_list = list(diarization.itertracks(yield_label=True))
#print(diarization_list)
for turn, _, speaker in diarization_list:
diarize_segments.append({
"start": float(turn.start) + float(base_offset_s),
"end": float(turn.end) + float(base_offset_s),
"speaker": speaker
})
unique_speakers = {speaker for segment in diarize_segments for speaker in [segment["speaker"]]}
detected_num_speakers = len(unique_speakers)
# Compute per-speaker embeddings by averaging segment embeddings
speaker_embeddings = {}
try:
embedder = self._load_embedder()
spk_to_embs = {spk: [] for spk in unique_speakers}
# Primary path: slice in-memory waveform and zero-pad short segments
min_embed_duration_sec = 3.0
audio_duration_sec = float(waveform.shape[1]) / float(sample_rate)
for turn, _, speaker in diarization_list:
seg_start = float(turn.start)
seg_end = float(turn.end)
if seg_end <= seg_start:
continue
start_sample = max(0, int(seg_start * sample_rate))
end_sample = min(waveform.shape[1], int(seg_end * sample_rate))
if end_sample <= start_sample:
continue
seg_wav = waveform[:, start_sample:end_sample].contiguous()
min_samples = int(min_embed_duration_sec * sample_rate)
if seg_wav.shape[1] < min_samples:
pad_len = min_samples - seg_wav.shape[1]
pad = torch.zeros(seg_wav.shape[0], pad_len, dtype=seg_wav.dtype, device=seg_wav.device)
seg_wav = torch.cat([seg_wav, pad], dim=1)
try:
emb = embedder({"waveform": seg_wav, "sample_rate": sample_rate})
except Exception:
# Fallback: use crop on the file with expanded window to minimum duration
desired_end = min(seg_start + min_embed_duration_sec, audio_duration_sec)
desired_start = max(0.0, desired_end - min_embed_duration_sec)
emb = embedder.crop(audio_path, Segment(desired_start, desired_end))
spk_to_embs[speaker].append(emb.squeeze())
# average
for spk, embs in spk_to_embs.items():
if len(embs) == 0:
continue
# stack and mean
try:
import torch as _torch
embs_tensor = _torch.stack([_torch.as_tensor(e) for e in embs], dim=0)
centroid = embs_tensor.mean(dim=0)
# L2 normalize
centroid = centroid / (centroid.norm(p=2) + 1e-12)
speaker_embeddings[spk] = centroid.cpu().tolist()
except Exception:
# fallback to first embedding
speaker_embeddings[spk] = embs[0].cpu().tolist()
#print(speaker_embeddings[spk])
except Exception as e:
print(f"Error during embedding calculation: {e}")
print(f"Diarization segments: {diarize_segments}")
pass
diarization_time = time.time() - start_time
print(f"Diarization completed in {diarization_time:.2f} seconds")
return diarize_segments, detected_num_speakers, speaker_embeddings
def _load_embedder(self):
"""Lazy-load speaker embedding inference model on GPU."""
global _embedder
if _embedder is None:
# window="whole" to compute one embedding per provided chunk
token = os.getenv("HF_TOKEN")
model = Model.from_pretrained("pyannote/embedding", use_auth_token=token)
_embedder = Inference(model, window="whole", device=torch.device("cuda"))
return _embedder
def assign_speakers_to_transcription(self, transcription_results, diarization_segments):
"""Assign speakers to words and segments based on overlap with diarization segments."""
if not diarization_segments:
return transcription_results
# simple helper to find speaker at given time
def speaker_at(t: float):
for seg in diarization_segments:
if seg["start"] <= t < seg["end"]:
return seg["speaker"]
# if not inside, return closest segment's speaker
closest = None
best = float("inf")
for seg in diarization_segments:
if t < seg["start"]:
d = seg["start"] - t
elif t > seg["end"]:
d = t - seg["end"]
else:
d = 0.0
if d < best:
best = d
closest = seg
return closest["speaker"] if closest else "SPEAKER_00"
for seg in transcription_results:
# Assign per-word speakers
if seg.get("words"):
speaker_counts = {}
for w in seg["words"]:
mid = (float(w["start"]) + float(w["end"])) / 2.0
spk = speaker_at(mid)
w["speaker"] = spk
speaker_counts[spk] = speaker_counts.get(spk, 0) + (float(w["end"]) - float(w["start"]))
# Segment speaker = speaker with max accumulated word duration
if speaker_counts:
seg["speaker"] = max(speaker_counts.items(), key=lambda kv: kv[1])[0]
else:
mid = (float(seg["start"]) + float(seg["end"])) / 2.0
seg["speaker"] = speaker_at(mid)
return transcription_results
def group_segments_by_speaker(self, segments, max_gap=1.0, max_duration=30.0):
"""Group consecutive segments from the same speaker"""
if not segments:
return segments
grouped_segments = []
current_group = segments[0].copy()
sentence_end_pattern = r"[.!?]+"
for segment in segments[1:]:
time_gap = segment["start"] - current_group["end"]
current_duration = current_group["end"] - current_group["start"]
# Conditions for combining segments
can_combine = (
segment["speaker"] == current_group["speaker"] and
time_gap <= max_gap and
current_duration < max_duration and
not re.search(sentence_end_pattern, current_group["text"][-1:])
)
if can_combine:
# Merge segments
current_group["end"] = segment["end"]
current_group["text"] += " " + segment["text"]
current_group["words"].extend(segment["words"])
current_group["duration"] = current_group["end"] - current_group["start"]
else:
# Start new group
grouped_segments.append(current_group)
current_group = segment.copy()
grouped_segments.append(current_group)
# Clean up text
for segment in grouped_segments:
segment["text"] = re.sub(r"\s+", " ", segment["text"]).strip()
segment["text"] = re.sub(r"\s+([.,!?])", r"\1", segment["text"])
return grouped_segments
@spaces.GPU # each call gets a GPU slice
def process_audio_full(self, task_json, language=None, translate=False, prompt=None, group_segments=True, batch_size=16):
"""Process a single chunk using task JSON (no diarization)."""
if not task_json or not str(task_json).strip():
return {"error": "No JSON provided"}
pre_meta = None
try:
print("Starting full transcription pipeline...")
# Step 1: Preprocess per chunk JSON
print("Preprocessing chunk JSON...")
pre_meta = self.preprocess_from_task_json(task_json)
if pre_meta.get("skip"):
return {"segments": [], "language": "unknown", "num_speakers": 1, "transcription_method": "full_audio_batched", "batch_size": batch_size}
wav_path = pre_meta["out_wav_path"]
# Adjust timestamps by trimmed_start_ms: abs_start_ms is already global start for saved file
base_offset_s = float(pre_meta.get("abs_start_ms", 0)) / 1000.0
# Step 2: Transcribe the entire audio with batching
transcription_results, detected_language = self.transcribe_full_audio(
wav_path, language, translate, prompt, batch_size, base_offset_s=base_offset_s
)
# Step 3: Group segments if requested (based on time gaps and sentence endings)
if group_segments:
transcription_results = self.group_segments_by_speaker(transcription_results)
# Step 4: Return results
return {
"segments": transcription_results,
"language": detected_language,
"num_speakers": 1, # Single speaker assumption
"transcription_method": "full_audio_batched",
"batch_size": batch_size
}
except Exception as e:
import traceback
traceback.print_exc()
return {"error": f"Processing failed: {str(e)}"}
finally:
# Clean up preprocessed wav
if pre_meta and pre_meta.get("out_wav_path") and os.path.exists(pre_meta["out_wav_path"]):
try:
os.unlink(pre_meta["out_wav_path"])
except Exception:
pass
@spaces.GPU # each call gets a GPU slice
def process_audio(self, task_json, num_speakers=None, language=None,
translate=False, prompt=None, group_segments=True, batch_size=8):
"""Main processing function with diarization using task JSON for a single chunk.
Transcribes full (preprocessed) audio once, performs diarization, merges speakers into transcription.
"""
if not task_json or not str(task_json).strip():
return {"error": "No JSON provided"}
pre_meta = None
try:
print("Starting new processing pipeline...")
# Step 1: Preprocess per chunk JSON
print("Preprocessing chunk JSON...")
pre_meta = self.preprocess_from_task_json(task_json)
if pre_meta.get("skip"):
return {"segments": [], "language": "unknown", "num_speakers": 0, "transcription_method": "diarized_segments_batched", "batch_size": batch_size}
wav_path = pre_meta["out_wav_path"]
base_offset_s = float(pre_meta.get("abs_start_ms", 0)) / 1000.0
# Step 2: Transcribe full audio once
transcription_results, detected_language = self.transcribe_full_audio(
wav_path, language, translate, prompt, batch_size, base_offset_s=base_offset_s
)
# Step 3: Perform diarization with global offset
diarization_segments, detected_num_speakers, speaker_embeddings = self.perform_diarization(
wav_path, num_speakers, base_offset_s=base_offset_s
)
# Step 4: Merge diarization into transcription (assign speakers)
transcription_results = self.assign_speakers_to_transcription(transcription_results, diarization_segments)
# Step 5: Group segments if requested
if group_segments:
transcription_results = self.group_segments_by_speaker(transcription_results)
# Step 6: Return results
result = {
"segments": transcription_results,
"language": detected_language,
"num_speakers": detected_num_speakers,
"transcription_method": "diarized_segments_batched",
"batch_size": batch_size,
"speaker_embeddings": speaker_embeddings,
}
job_id = pre_meta["job_id"]
task_id = pre_meta["chunk_idx"]
filekey = f"ai-transcribe/split/{job_id}-{task_id}.json"
ret = upload_data_to_r2(json.dumps(result), "intermediate", filekey)
if ret:
return {"filekey": filekey}
else:
return {"error": "Failed to upload to R2"}
except Exception as e:
import traceback
traceback.print_exc()
return {"error": f"Processing failed: {str(e)}"}
finally:
# Clean up preprocessed wav
if pre_meta and pre_meta.get("out_wav_path") and os.path.exists(pre_meta["out_wav_path"]):
try:
os.unlink(pre_meta["out_wav_path"])
except Exception:
pass
# Initialize transcriber
transcriber = WhisperTranscriber()
def format_segments_for_display(result):
"""Format segments for display in Gradio"""
if "error" in result:
return f"❌ Error: {result['error']}"
segments = result.get("segments", [])
language = result.get("language", "unknown")
num_speakers = result.get("num_speakers", 1)
method = result.get("transcription_method", "unknown")
batch_size = result.get("batch_size", "N/A")
output = f"🎯 **Detection Results:**\n"
output += f"- Language: {language}\n"
output += f"- Speakers: {num_speakers}\n"
output += f"- Segments: {len(segments)}\n"
output += f"- Method: {method}\n"
output += f"- Batch Size: {batch_size}\n\n"
output += "πŸ“ **Transcription:**\n\n"
for i, segment in enumerate(segments, 1):
start_time = str(datetime.timedelta(seconds=int(segment["start"])))
end_time = str(datetime.timedelta(seconds=int(segment["end"])))
speaker = segment.get("speaker", "SPEAKER_00")
text = segment["text"]
output += f"**{speaker}** ({start_time} β†’ {end_time})\n"
output += f"{text}\n\n"
return output
@spaces.GPU
def process_audio_gradio(task_json, num_speakers, language, translate, prompt, group_segments, use_diarization, batch_size):
"""Gradio interface function"""
if use_diarization:
result = transcriber.process_audio(
task_json=task_json,
num_speakers=num_speakers if num_speakers > 0 else None,
language=language if language != "auto" else None,
translate=translate,
prompt=prompt if prompt and prompt.strip() else None,
group_segments=group_segments,
batch_size=batch_size
)
else:
result = transcriber.process_audio_full(
task_json=task_json,
language=language if language != "auto" else None,
translate=translate,
prompt=prompt if prompt and prompt.strip() else None,
group_segments=group_segments,
batch_size=batch_size
)
formatted_output = format_segments_for_display(result)
return formatted_output, result
# Create Gradio interface
demo = gr.Blocks(
title="πŸŽ™οΈ Whisper Transcription with Speaker Diarization",
theme="default"
)
with demo:
gr.Markdown("""
# πŸŽ™οΈ Advanced Audio Transcription & Speaker Diarization
Upload an audio file to get accurate transcription with speaker identification, powered by:
- **Faster-Whisper Large V3 Turbo** with batched inference for optimal performance
- **Pyannote 3.1** for speaker diarization
- **ZeroGPU** acceleration for optimal performance
""")
with gr.Row():
with gr.Column():
task_json_input = gr.Textbox(
label="🧾 Paste Task JSON",
placeholder="Paste the per-chunk task JSON here...",
lines=16,
)
with gr.Accordion("βš™οΈ Advanced Settings", open=False):
use_diarization = gr.Checkbox(
label="Enable Speaker Diarization",
value=True,
info="Uncheck for faster transcription without speaker identification"
)
batch_size = gr.Slider(
minimum=1,
maximum=128,
value=16,
step=1,
label="Batch Size",
info="Higher values = faster processing but more GPU memory usage. Recommended: 8-24"
)
num_speakers = gr.Slider(
minimum=0,
maximum=20,
value=0,
step=1,
label="Number of Speakers (0 = auto-detect)",
visible=True
)
language = gr.Dropdown(
choices=["auto", "en", "es", "fr", "de", "it", "pt", "ru", "ja", "ko", "zh"],
value="auto",
label="Language"
)
translate = gr.Checkbox(
label="Translate to English",
value=False
)
prompt = gr.Textbox(
label="Vocabulary Prompt (names, acronyms, etc.)",
placeholder="Enter names, technical terms, or context...",
lines=2
)
group_segments = gr.Checkbox(
label="Group segments by speaker/time",
value=True
)
process_btn = gr.Button("πŸš€ Transcribe Audio", variant="primary")
with gr.Column():
output_text = gr.Markdown(
label="πŸ“ Transcription Results",
value="Paste task JSON and click 'Transcribe Audio' to get started!"
)
output_json = gr.JSON(
label="πŸ”§ Raw Output (JSON)",
visible=False
)
# Update visibility of num_speakers based on diarization toggle
use_diarization.change(
fn=lambda x: gr.update(visible=x),
inputs=[use_diarization],
outputs=[num_speakers]
)
# Event handlers
process_btn.click(
fn=process_audio_gradio,
inputs=[
task_json_input,
num_speakers,
language,
translate,
prompt,
group_segments,
use_diarization,
batch_size
],
outputs=[output_text, output_json]
)
# Examples
gr.Markdown("### πŸ“‹ Usage Tips:")
gr.Markdown("""
- Paste a single-chunk task JSON matching the preprocess schema
- Batch Size: Higher values (16-24) = faster but uses more GPU memory
- Speaker diarization: Enable for speaker identification (slower)
- Languages: Supports 100+ languages with auto-detection
- Vocabulary: Add names and technical terms in the prompt for better accuracy
""")
if __name__ == "__main__":
demo.launch(debug=True)