Spaces:
Running
Running
refactored app.py
Browse files
app.py
CHANGED
|
@@ -1,119 +1,60 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
|
|
|
| 3 |
|
| 4 |
playground = gr.Blocks()
|
| 5 |
|
| 6 |
-
|
| 7 |
-
def review_training_choices(choice):
|
| 8 |
-
print(choice)
|
| 9 |
-
if choice == "Use Pipeline":
|
| 10 |
-
return gr.Row(visible=True)
|
| 11 |
-
else:
|
| 12 |
-
return gr.Row(visible=False)
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
def show_optional_fields(task):
|
| 16 |
-
if task == "question-answering":
|
| 17 |
-
return gr.TextArea(visible=True)
|
| 18 |
-
return gr.TextArea(visible=False)
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
def test_pipeline(task, model=None, prompt=None, context=None):
|
| 22 |
-
if model:
|
| 23 |
-
test = pipeline(task, model=model)
|
| 24 |
-
else:
|
| 25 |
-
if task == "ner":
|
| 26 |
-
test = pipeline(task, grouped_entities=True)
|
| 27 |
-
else:
|
| 28 |
-
test = pipeline(task)
|
| 29 |
-
if task == "question-answering":
|
| 30 |
-
if not context:
|
| 31 |
-
return "Context is required"
|
| 32 |
-
else:
|
| 33 |
-
result = test(question=prompt, context=context)
|
| 34 |
-
else:
|
| 35 |
-
result = test(prompt)
|
| 36 |
-
match task:
|
| 37 |
-
case "text-generation":
|
| 38 |
-
return gr.TextArea(result[0]["generated_text"])
|
| 39 |
-
case "fill-mask":
|
| 40 |
-
return gr.TextArea(result[0]["sequence"])
|
| 41 |
-
case "summarization":
|
| 42 |
-
return gr.TextArea(result[0]["summary_text"])
|
| 43 |
-
case "ner":
|
| 44 |
-
ner_result = "\n".join(
|
| 45 |
-
f"{k}={v}" for item in result for k, v in item.items() if k not in ["start", "end", "index"])
|
| 46 |
-
return gr.TextArea(ner_result.rstrip("\n"))
|
| 47 |
-
|
| 48 |
-
case "question-answering":
|
| 49 |
-
return gr.TextArea(result)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
with playground:
|
| 53 |
-
|
| 54 |
-
Try your ideas here. Select from Text, Image or Audio
|
| 55 |
-
""")
|
| 56 |
with gr.Tabs():
|
| 57 |
with gr.TabItem("Text"):
|
| 58 |
-
|
| 59 |
-
with gr.Column(scale=4):
|
| 60 |
-
radio = gr.Radio(
|
| 61 |
-
["Use Pipeline", "Fine Tune"],
|
| 62 |
-
label="Select Use Pipeline to try out HF models or Fine Tune to test it on your own datasets",
|
| 63 |
-
value="Use Pipeline",
|
| 64 |
-
interactive=True,
|
| 65 |
-
)
|
| 66 |
-
with gr.Column(scale=1):
|
| 67 |
-
test_pipeline_button = gr.Button(
|
| 68 |
-
value="Test", variant="primary", size="sm")
|
| 69 |
with gr.Row(visible=True) as use_pipeline:
|
| 70 |
with gr.Column():
|
| 71 |
task_dropdown = gr.Dropdown(
|
| 72 |
-
[("
|
| 73 |
-
|
| 74 |
-
label="
|
|
|
|
|
|
|
| 75 |
)
|
| 76 |
model_dropdown = gr.Dropdown(
|
| 77 |
-
[],
|
| 78 |
-
label="model",
|
| 79 |
-
allow_custom_value=True,
|
| 80 |
-
interactive=True
|
| 81 |
-
)
|
| 82 |
prompt_textarea = gr.TextArea(
|
| 83 |
-
label="
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
context_for_question_answer = gr.TextArea(
|
| 85 |
-
label="Context",
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
with gr.Column():
|
| 89 |
text = gr.TextArea(label="Generated Text")
|
| 90 |
radio.change(review_training_choices,
|
| 91 |
inputs=radio, outputs=use_pipeline)
|
| 92 |
-
test_pipeline_button.click(test_pipeline,
|
| 93 |
-
|
|
|
|
|
|
|
| 94 |
with gr.TabItem("Image"):
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
label="Select Use Pipeline to try out HF models or Fine Tune to test it on your own datasets",
|
| 100 |
-
value="Use Pipeline",
|
| 101 |
-
interactive=True
|
| 102 |
-
)
|
| 103 |
-
with gr.Column(scale=1):
|
| 104 |
-
test_pipeline_button = gr.Button(
|
| 105 |
-
value="Test", variant="primary", size="sm")
|
| 106 |
with gr.TabItem("Audio"):
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
interactive=True
|
| 114 |
-
)
|
| 115 |
-
with gr.Column(scale=1):
|
| 116 |
-
test_pipeline_button = gr.Button(
|
| 117 |
-
value="Test", variant="primary", size="sm")
|
| 118 |
-
|
| 119 |
-
playground.launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from task import tasks_config
|
| 3 |
+
from pipeline_utils import handle_task_change, review_training_choices, test_pipeline
|
| 4 |
+
from playground_utils import create_playground_header, create_playground_footer, create_tabs_header
|
| 5 |
|
| 6 |
playground = gr.Blocks()
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
with playground:
|
| 9 |
+
create_playground_header()
|
|
|
|
|
|
|
| 10 |
with gr.Tabs():
|
| 11 |
with gr.TabItem("Text"):
|
| 12 |
+
radio, test_pipeline_button = create_tabs_header()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
with gr.Row(visible=True) as use_pipeline:
|
| 14 |
with gr.Column():
|
| 15 |
task_dropdown = gr.Dropdown(
|
| 16 |
+
choices=[(task["name"], task_id)
|
| 17 |
+
for task_id, task in tasks_config.items()],
|
| 18 |
+
label="Task",
|
| 19 |
+
interactive=True,
|
| 20 |
+
info="Select Pipelines for natural language processing tasks or type if you have your own."
|
| 21 |
)
|
| 22 |
model_dropdown = gr.Dropdown(
|
| 23 |
+
[], label="Model", info="Select appropriate Model based on the task you selected")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
prompt_textarea = gr.TextArea(
|
| 25 |
+
label="Prompt",
|
| 26 |
+
value="Enter your prompt here",
|
| 27 |
+
text_align="left",
|
| 28 |
+
info="Copy/Paste or type your prompt to try out. Make sure to provide clear prompt or try with different prompts"
|
| 29 |
+
)
|
| 30 |
context_for_question_answer = gr.TextArea(
|
| 31 |
+
label="Context",
|
| 32 |
+
value="Enter Context for your question here",
|
| 33 |
+
visible=False,
|
| 34 |
+
interactive=True,
|
| 35 |
+
info="Question answering tasks return an answer given a question. If you’ve ever asked a virtual assistant like Alexa, Siri or Google what the weather is, then you’ve used a question answering model before. Here, we are doing Extractive(extract the answer from the given context) Question answering. "
|
| 36 |
+
)
|
| 37 |
+
task_dropdown.change(handle_task_change,
|
| 38 |
+
inputs=[task_dropdown],
|
| 39 |
+
outputs=[context_for_question_answer,
|
| 40 |
+
model_dropdown, task_dropdown])
|
| 41 |
with gr.Column():
|
| 42 |
text = gr.TextArea(label="Generated Text")
|
| 43 |
radio.change(review_training_choices,
|
| 44 |
inputs=radio, outputs=use_pipeline)
|
| 45 |
+
test_pipeline_button.click(test_pipeline,
|
| 46 |
+
inputs=[
|
| 47 |
+
task_dropdown, model_dropdown, prompt_textarea, context_for_question_answer],
|
| 48 |
+
outputs=text)
|
| 49 |
with gr.TabItem("Image"):
|
| 50 |
+
radio, test_pipeline_button = create_tabs_header()
|
| 51 |
+
gr.Markdown("""
|
| 52 |
+
> WIP
|
| 53 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
with gr.TabItem("Audio"):
|
| 55 |
+
radio, test_pipeline_button = create_tabs_header()
|
| 56 |
+
gr.Markdown("""
|
| 57 |
+
> WIP
|
| 58 |
+
""")
|
| 59 |
+
create_playground_footer()
|
| 60 |
+
playground.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|