Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import TrainingArguments, AutoConfig, AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import numpy as np
|
3 |
+
from transformers import LlamaConfig, LlamaForCausalLM
|
4 |
+
import trl
|
5 |
+
import torch
|
6 |
+
from datasets import load_dataset
|
7 |
+
from transformers import PreTrainedTokenizerFast
|
8 |
+
import requests as rq
|
9 |
+
import gc
|
10 |
+
from tokenizers import ByteLevelBPETokenizer
|
11 |
+
|
12 |
+
dataset = load_dataset("nroggendorff/openhermes", split="train")#.select(range(int(5e+4)))
|
13 |
+
|
14 |
+
def get_training_corpus():
|
15 |
+
for i in range(0, len(dataset), 1000):
|
16 |
+
yield dataset[i : i + 1000]["text"]
|
17 |
+
|
18 |
+
training_corpus = get_training_corpus()
|
19 |
+
|
20 |
+
tokenizer = ByteLevelBPETokenizer()
|
21 |
+
|
22 |
+
tokenizer.train_from_iterator(
|
23 |
+
training_corpus,
|
24 |
+
vocab_size=3200,
|
25 |
+
min_frequency=2,
|
26 |
+
special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>", "<|user|>", "<|bot|>", "<|end|>"]
|
27 |
+
)
|
28 |
+
|
29 |
+
tokenizer.save("custom_tokenizer.json")
|
30 |
+
|
31 |
+
tokenizer = PreTrainedTokenizerFast(tokenizer_file="custom_tokenizer.json")
|
32 |
+
|
33 |
+
tokenizer.bos_token = "<s>"
|
34 |
+
tokenizer.eos_token = "</s>"
|
35 |
+
tokenizer.unk_token = "<unk>"
|
36 |
+
tokenizer.pad_token = "<pad>"
|
37 |
+
tokenizer.mask_token = "<mask>"
|
38 |
+
|
39 |
+
tokenizer.additional_special_tokens = ["<|user|>", "<|bot|>", "<|end|>"]
|
40 |
+
|
41 |
+
tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
|
42 |
+
tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
|
43 |
+
|
44 |
+
chat_template = "{{bos_token}}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}{{ eos_token }}"
|
45 |
+
|
46 |
+
tokenizer.chat_template = chat_template
|
47 |
+
|
48 |
+
tokenizer.add_special_tokens({
|
49 |
+
"additional_special_tokens": ["<|user|>", "<|bot|>", "<|end|>"]
|
50 |
+
})
|
51 |
+
|
52 |
+
tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
|
53 |
+
tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
|
54 |
+
|
55 |
+
tokenizer.save_pretrained("llama-tokenizer")
|
56 |
+
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("llama-tokenizer")
|
58 |
+
print(tokenizer.apply_chat_template([{"role": "user", "content": "Why is the sky blue?"}, {"role": "assistant", "content": "Due to rayleigh scattering."}, {"role": "user", "content": "That's cool."}, {"role": "assistant", "content": "Yeah, I agree."}], tokenize=False))
|
59 |
+
|
60 |
+
config = LlamaConfig(
|
61 |
+
vocab_size=tokenizer.vocab_size,
|
62 |
+
hidden_size=int(512 / 1),
|
63 |
+
intermediate_size=int(1024 / 1),
|
64 |
+
num_hidden_layers=int(8 / 1),
|
65 |
+
num_attention_heads=int(8 / 1),
|
66 |
+
max_position_embeddings=int(512 / 1),
|
67 |
+
rms_norm_eps=1e-6,
|
68 |
+
initializer_range=0.02,
|
69 |
+
use_cache=True,
|
70 |
+
pad_token_id=tokenizer.pad_token_id,
|
71 |
+
bos_token_id=tokenizer.bos_token_id,
|
72 |
+
eos_token_id=tokenizer.eos_token_id,
|
73 |
+
tie_word_embeddings=False,
|
74 |
+
)
|
75 |
+
|
76 |
+
model = LlamaForCausalLM(config)
|
77 |
+
|
78 |
+
def format_prompts(examples):
|
79 |
+
texts = []
|
80 |
+
for text in examples['text']:
|
81 |
+
conversation = []
|
82 |
+
parts = text.split('<|end|>')
|
83 |
+
for i in range(0, len(parts) - 1, 2):
|
84 |
+
prompt = parts[i].replace("<|user|>", "")
|
85 |
+
response = parts[i + 1].replace("<|bot|>", "")
|
86 |
+
conversation.append({"role": "user", "content": prompt})
|
87 |
+
conversation.append({"role": "assistant", "content": response})
|
88 |
+
formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
|
89 |
+
texts.append(formatted_conversation)
|
90 |
+
output = {}
|
91 |
+
output['text'] = texts
|
92 |
+
return output
|
93 |
+
|
94 |
+
dataset = dataset.map(format_prompts, batched=True)
|
95 |
+
|
96 |
+
print(dataset['text'][2])
|
97 |
+
|
98 |
+
args = TrainingArguments(
|
99 |
+
output_dir="mayo",
|
100 |
+
num_train_epochs=4,
|
101 |
+
gradient_accumulation_steps=4,
|
102 |
+
per_device_train_batch_size=1,
|
103 |
+
learning_rate=1e-5,
|
104 |
+
save_steps=100000,
|
105 |
+
fp16=True,
|
106 |
+
optim="sgd",
|
107 |
+
optim_target_modules=["attn", "mlp"],
|
108 |
+
max_grad_norm=0.3
|
109 |
+
)
|
110 |
+
|
111 |
+
trainer = trl.SFTTrainer(
|
112 |
+
model=model,
|
113 |
+
tokenizer=tokenizer,
|
114 |
+
args=args,
|
115 |
+
train_dataset=dataset,
|
116 |
+
dataset_text_field='text',
|
117 |
+
max_seq_length=512,
|
118 |
+
)
|
119 |
+
|
120 |
+
torch.cuda.set_device(0)
|
121 |
+
|
122 |
+
gc.collect()
|
123 |
+
torch.cuda.empty_cache()
|
124 |
+
|
125 |
+
try:
|
126 |
+
trainer.train()
|
127 |
+
except Exception as e:
|
128 |
+
rq.post("https://discord.com/api/webhooks/1245084721923358730/pVHUf2PR4Wst52KVNxVSeAHnSIKxx-PLdd90OHASegb30cNoGZe9N476LzCDVLQXDbT0", json={"content": str(e)})
|
129 |
+
|
130 |
+
#trainer.push_to_hub()
|
131 |
+
trained_model = trainer.model
|
132 |
+
trained_tokenizer = trainer.tokenizer
|
133 |
+
|
134 |
+
repo_id = "makeshift-mayo"
|
135 |
+
trained_model.push_to_hub(repo_id)
|
136 |
+
trained_tokenizer.push_to_hub(repo_id)
|
137 |
+
|
138 |
+
rq.post("https://discord.com/api/webhooks/1245084721923358730/pVHUf2PR4Wst52KVNxVSeAHnSIKxx-PLdd90OHASegb30cNoGZe9N476LzCDVLQXDbT0", json={"content": "that shit is finally done"})
|