File size: 7,016 Bytes
d72e6ae
 
 
 
 
040f347
0f3cc51
d72e6ae
 
93bbe69
e728d3c
0716c74
f76d178
f957dfd
b1e38e3
c5cf0dd
fea8645
8cbd82e
f76d178
 
98928b9
1ca2977
d92611d
1f2defa
d72e6ae
 
0f3cc51
 
0e301cc
b06da2c
 
f76d178
0f3cc51
d72e6ae
 
 
062ca1d
 
85c4894
d72e6ae
 
 
 
062ca1d
d72e6ae
 
 
 
 
f81694f
4b91394
 
4aafa13
d72e6ae
b8f77cf
6008f38
 
 
b8f77cf
 
 
d72e6ae
fc4a559
d72e6ae
 
fc4a559
 
 
 
 
 
 
 
 
 
 
aede1bb
d72e6ae
 
 
 
 
 
304de92
1f2defa
 
d72e6ae
 
 
 
 
 
 
 
 
 
 
 
 
3304e16
9783042
3304e16
 
d72e6ae
 
 
 
 
 
5c9b987
d72e6ae
5c9b987
 
d72e6ae
d4793df
 
 
 
d72e6ae
d4793df
 
d72e6ae
fc4a559
d72e6ae
 
 
 
 
a3dd2de
 
 
837ed4a
67fdfd0
5d4d177
e8700aa
d72e6ae
a3dd2de
 
d0eec81
fc4a559
a3dd2de
84b97dd
a3dd2de
fc4a559
d72e6ae
 
 
 
 
 
88f2941
 
d72e6ae
d2ce25e
31cd6e7
d72e6ae
 
 
 
1f2defa
3304e16
 
 
 
31cd6e7
fc4a559
 
1f2defa
1fbb83b
1f2defa
d72e6ae
13b4d78
d72e6ae
4aafa13
 
 
 
f81694f
d4793df
3304e16
 
ca7245e
ff3a9c3
3304e16
 
ff3a9c3
d72e6ae
 
3304e16
d72e6ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os

import torch
import trl

from transformers import AutoTokenizer, LlamaConfig, AutoModelForCausalLM, LlamaForCausalLM, TrainingArguments, PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
from datasets import load_dataset, Dataset
from tokenizers import ByteLevelBPETokenizer

BATCH_SIZE = 192
EPOCHS = 2
LEARNING_RATE = 2e-4
FACTOR = 22 * 30
MAX_SEQ_LENGTH = 128
VOCAB_SIZE = 32000
INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
INSTRUCT_DATASET = "nroggendorff/elephant"
OUTPUT_REPO = "nroggendorff/smallama"
INSTRUCT_FINETUNE_BOOL = False
FP16 = False
WARMUP_STEPS = 0
DECAY = 0
GRADIENT_ACCUMULATION_STEPS = 1
PUSH_TO_HUB = True

def load_data():
    if not INSTRUCT_FINETUNE_BOOL:
        dataset = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
        dataset = Dataset.from_generator(lambda: dataset.take(int(9e+5)))
    else:
        dataset = load_dataset(INSTRUCT_DATASET, split="train", streaming=True)
        dataset = Dataset.from_generator(lambda: dataset.take(int(5e+5)))
    return dataset

def create_tokenizer(training_corpus):
    tokenizer = ByteLevelBPETokenizer()
    special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
    if INSTRUCT_FINETUNE_BOOL:
        special_tokens.append(["<|user|>", "<|bot|>", "<|end|>"])
    tokenizer.train_from_iterator(
        training_corpus,
        vocab_size=VOCAB_SIZE,
        min_frequency=2,
        special_tokens=special_tokens
    )

    fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
    return fast_tokenizer

def load_tokenizer():
    tokenizer = AutoTokenizer.from_pretrained(OUTPUT_REPO)
    return tokenizer

def get_training_corpus(dataset):
    texts = []
    #for field in ['pretrain', 'instruct']:
    #    texts.extend(dataset[field]['text'])
    texts.extend(dataset['text'])

    for i in range(0, len(texts), 1000):
        yield texts[i : i + 1000]

def format_prompts(examples, tokenizer, isinst):
    texts = []
    for text in examples['text']:
        if isinst:
            conversation = []
            parts = text.split('<|end|>')
            for i in range(0, len(parts) - 1, 2):
                prompt = parts[i].replace("<|user|>", "")
                response = parts[i + 1].replace("<|bot|>", "")
                conversation.append({"role": "user", "content": prompt})
                conversation.append({"role": "assistant", "content": response})
            formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
            texts.append(formatted_conversation)
        else:
            texts.append(tokenizer.bos_token + text + tokenizer.eos_token)
    return {"text": texts}

def create_model(tokenizer):
    config = LlamaConfig(
        vocab_size=tokenizer.vocab_size,
        hidden_size=FACTOR,
        intermediate_size=FACTOR * 4,
        num_hidden_layers=max(1, FACTOR // 32),
        num_attention_heads=max(1, FACTOR // 64),
        max_position_embeddings=MAX_SEQ_LENGTH,
        rms_norm_eps=1e-6,
        initializer_range=0.02,
        use_cache=True,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        tie_word_embeddings=False,
    )
    
    model = LlamaForCausalLM(config)
    return model

def load_model():
    model = AutoModelForCausalLM.from_pretrained(OUTPUT_REPO)
    return model

def configure_tokenizer(tokenizer):
    special_tokens = {
        "bos_token": "<s>",
        "eos_token": "</s>",
        "unk_token": "<unk>",
        "pad_token": "<pad>",
        "mask_token": "<mask>"
    }
    if INSTRUCT_FINETUNE_BOOL:
        special_tokens["additional_special_tokens"] = ["<|user|>", "<|bot|>", "<|end|>"]
    tokenizer.add_special_tokens(special_tokens)

    if INSTRUCT_FINETUNE_BOOL:
        tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
        tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
    
        chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
        tokenizer.chat_template = chat_template

def train_model(model, tokenizer, dataset, push, isinst):
    args = TrainingArguments(
        output_dir="model",
        num_train_epochs=EPOCHS,
        per_device_train_batch_size=BATCH_SIZE,
        learning_rate=LEARNING_RATE,
        optim="adamw_torch",
        warmup_steps=WARMUP_STEPS,
        weight_decay=DECAY,
        gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
        fp16=FP16,
        save_steps=int(1e+10),
        logging_steps=10
    )

    optimizer = AdamW(model.parameters(), lr=args.learning_rate)
    scheduler = get_cosine_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps, 
        num_training_steps=(len(dataset) // args.per_device_train_batch_size) * args.num_train_epochs
    )
    dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)
    trainer = trl.SFTTrainer(
        model=model,
        tokenizer=tokenizer,
        args=args,
        train_dataset=dataset,
        dataset_text_field='text',
        max_seq_length=MAX_SEQ_LENGTH,
        optimizers=(optimizer, scheduler)
    )
    
    train = trainer.train()
    
    trained_model = trainer.model
    trained_tokenizer = trainer.tokenizer
    
    if push:
        if INSTRUCT_FINETUNE_BOOL:      
            repo_id = OUTPUT_REPO + "-it"
        else:
            repo_id = OUTPUT_REPO
        msg = str(train.training_loss)
        trained_model.push_to_hub(repo_id, commit_message=msg, force=True)
        trained_tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
    else:
        trained_model.save_pretrained("model")
        trained_tokenizer.save_pretrained("tokenizer")

def main(push_to_hub=True, is_inst_finetune=False):
    dataset = load_data()
    if not is_inst_finetune:
        training_corpus = get_training_corpus(dataset)
        tokenizer = create_tokenizer(training_corpus)
    else:
        tokenizer = load_tokenizer()
    configure_tokenizer(tokenizer)
    if is_inst_finetune:
        model = load_model()
        model.resize_token_embeddings(len(tokenizer))
        train_model(model, tokenizer, dataset, push_to_hub, True)
    else:
        model = create_model(tokenizer)
        train_model(model, tokenizer, dataset, push_to_hub, False)

if __name__ == "__main__":
    main(PUSH_TO_HUB, INSTRUCT_FINETUNE_BOOL)
    raise RuntimeError("The script is finished.")