Spaces:
Configuration error
Configuration error
File size: 7,821 Bytes
09ffe17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
import json
import regex as re
from natsort import natsorted
from tqdm import tqdm
# Add the Marathi regex pattern at the top level
MARATHI_PATTERN = re.compile(r"""
# Contractions and common affixes
'चा|'ची|'चे|'ला|'ले|'नी|
# Words with optional vowel signs and modifiers
[\p{L}\p{M}]+|
# Numbers
\p{N}+|
# Punctuation and special characters
[^\s\p{L}\p{N}\p{M}]+|
# Whitespace
\s+
""", re.VERBOSE)
def text_to_bytes(text):
"""Convert text to byte tokens after applying Marathi regex"""
words = MARATHI_PATTERN.findall(text)
all_bytes = []
for word in words:
bytes_tokens = [b for c in word for b in c.encode('utf-8')]
all_bytes.extend(bytes_tokens)
return all_bytes
def read_text_files(folder_path='train', limit=10):
# Check if the folder exists
if not os.path.exists(folder_path):
print(f"Error: The folder '{folder_path}' does not exist.")
return
# Get list of all files in the folder
files = os.listdir(folder_path)
# Filter for text files and sort them naturally
text_files = natsorted([f for f in files if f.endswith(('.txt', '.text'))])
if not text_files:
print(f"No text files found in '{folder_path}' folder.")
return
# Take only the first 'limit' files
text_files = text_files[:limit]
# Initialize list to store all tokens
all_tokens = []
# Read and print contents of each file
for file_name in text_files:
file_path = os.path.join(folder_path, file_name)
try:
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
# Convert text to bytes using Marathi-aware tokenization
tokens = text_to_bytes(content)
all_tokens.extend(tokens)
except Exception as e:
print(f"Error reading {file_name}: {str(e)}")
print("\n=== Combined Statistics ===")
print("Total number of tokens:", len(all_tokens))
print("First 100 tokens:", all_tokens[:100])
return all_tokens
def get_stats(ids):
counts = {}
for pair in zip(ids, ids[1:]): # Pythonic way to iterate consecutive elements
counts[pair] = counts.get(pair, 0) + 1
return counts
def merge(ids, pair, idx):
newids = []
i = 0
while i < len(ids):
if i < len(ids) - 1 and ids[i] == pair[0] and ids[i+1] == pair[1]:
newids.append(idx)
i += 2
else:
newids.append(ids[i])
i += 1
return newids
def encode(text, merges):
"""
Encode text into tokens using the learned merges
"""
# First convert text to bytes using Marathi-aware tokenization
ids = text_to_bytes(text)
# Apply the merges in order of their token indices
# Sort by the token index to ensure consistent ordering
sorted_merges = sorted(merges.items(), key=lambda x: x[1])
for (p1, p2), idx in sorted_merges:
ids = merge(ids, (p1, p2), idx)
return ids
def decode(ids, merges):
"""
Decode tokens back to text using the learned merges
"""
# Create reverse mapping from token to pair
reverse_merges = {idx: pair for pair, idx in merges.items()}
# Expand all tokens recursively
def expand_token(token):
if token < 256: # Base case: token is a byte
return bytes([token])
# Recursive case: expand the token into its constituent pair
pair = reverse_merges[token]
return expand_token(pair[0]) + expand_token(pair[1])
# Expand all tokens and concatenate
bytes_list = [expand_token(id) for id in ids]
bytes_data = b''.join(bytes_list)
# Convert bytes back to text
try:
return bytes_data.decode('utf-8')
except UnicodeDecodeError:
return "[DECODE_ERROR]"
class Tokenizer:
def __init__(self, merges=None):
self.merges = merges or {}
def encode(self, text):
return encode(text, self.merges)
def decode(self, ids):
return decode(ids, self.merges)
def save(self, path):
"""Save the tokenizer to a JSON file"""
# Convert tuple keys to strings for JSON serialization
serializable_merges = {f"{p1},{p2}": idx for (p1, p2), idx in self.merges.items()}
with open(path, 'w') as f:
json.dump(serializable_merges, f)
@classmethod
def load(cls, path):
"""Load a tokenizer from a JSON file"""
with open(path, 'r') as f:
serialized_merges = json.load(f)
# Convert string keys back to tuples
merges = {tuple(map(int, k.split(','))): v for k, v in serialized_merges.items()}
return cls(merges)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=str, help='Path to tokenizer checkpoint')
parser.add_argument('--train', action='store_true', help='Train a new tokenizer')
parser.add_argument('--encode', type=str, help='Text to encode')
parser.add_argument('--decode', type=str, help='Comma-separated integers to decode')
args = parser.parse_args()
if args.train:
# Train new tokenizer
all_tokens = read_text_files(limit=100)
initial_len = len(all_tokens)
# ---
vocab_size = 5000 # the desired final vocabulary size
num_merges = vocab_size - 256
ids = list(all_tokens) # copy so we don't destroy the original list
merges = {} # (int, int) -> int
pbar = tqdm(range(num_merges), desc="Merging tokens")
for i in pbar:
stats = get_stats(ids)
pair = max(stats, key=stats.get)
idx = 256 + i
ids = merge(ids, pair, idx)
merges[pair] = idx
current_ratio = initial_len / len(ids)
pbar.write(f"Iteration {i+1}: compression ratio: {current_ratio:.2f}X")
print("\nFinal Statistics:")
print("Initial tokens length:", initial_len)
print("Final ids length:", len(ids))
print(f"Final compression ratio: {initial_len / len(ids):.2f}X")
tokenizer = Tokenizer(merges)
if args.checkpoint:
tokenizer.save(args.checkpoint)
print(f"Saved tokenizer to {args.checkpoint}")
elif args.encode or args.decode:
if not args.checkpoint:
print("Error: --checkpoint is required for encode/decode operations")
exit(1)
# Load tokenizer for encoding/decoding
tokenizer = Tokenizer.load(args.checkpoint)
print(f"Loaded tokenizer from {args.checkpoint}")
if args.encode:
# Encode the provided text
encoded = tokenizer.encode(args.encode)
print(f"\nEncoding: {args.encode}")
print(f"Encoded tokens: {encoded}")
if args.decode:
# Decode the provided tokens
try:
tokens = [int(x.strip()) for x in args.decode.split(',')]
decoded = tokenizer.decode(tokens)
print(f"\nDecoding: {tokens}")
print(f"Decoded text: {decoded}")
except ValueError:
print("Error: decode argument should be comma-separated integers")
exit(1)
else:
parser.print_help()
exit(1)
# Test encode/decode
test_text = "नमस्कार, जग! ही एक चाचणी आहे."
encoded = tokenizer.encode(test_text)
decoded = tokenizer.decode(encoded)
print("\nEncoding/Decoding Test:")
print(f"Original: {test_text}")
print(f"Encoded: {encoded}")
print(f"Decoded: {decoded}")
print(f"Successful roundtrip: {test_text == decoded}")
|