Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,42 +1,42 @@
|
|
| 1 |
import os
|
| 2 |
-
import yolov5
|
| 3 |
-
|
| 4 |
-
# load model
|
| 5 |
-
model = yolov5.load('keremberke/yolov5m-license-plate')
|
| 6 |
-
|
| 7 |
-
# set model parameters
|
| 8 |
-
model.conf = 0.5 # NMS confidence threshold
|
| 9 |
-
model.iou = 0.25 # NMS IoU threshold
|
| 10 |
-
model.agnostic = False # NMS class-agnostic
|
| 11 |
-
model.multi_label = False # NMS multiple labels per box
|
| 12 |
-
model.max_det = 1000 # maximum number of detections per image
|
| 13 |
-
|
| 14 |
-
# set image
|
| 15 |
-
def license_plate_detect(img):
|
| 16 |
-
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
from PIL import Image
|
| 31 |
-
# image = Image.open(img)
|
| 32 |
-
import pytesseract
|
| 33 |
-
|
| 34 |
-
def read_license_number(img):
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
|
| 41 |
from transformers import CLIPProcessor, CLIPModel
|
| 42 |
vit_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
|
@@ -51,12 +51,12 @@ def zero_shot_classification(image, labels):
|
|
| 51 |
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
| 52 |
return logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
| 53 |
|
| 54 |
-
installed_list = []
|
| 55 |
-
# image = Image.open(requests.get(url, stream=True).raw)
|
| 56 |
-
def check_solarplant_installed_by_license(license_number_list):
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
def check_solarplant_installed_by_image(image, output_label=False):
|
| 62 |
zero_shot_class_labels = ["bus with solar panel grids",
|
|
@@ -66,12 +66,12 @@ def check_solarplant_installed_by_image(image, output_label=False):
|
|
| 66 |
return zero_shot_class_labels[probs.argmax().item()]
|
| 67 |
return probs.argmax().item() == 0
|
| 68 |
|
| 69 |
-
def check_solarplant_broken(image):
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
|
| 76 |
from fastsam import FastSAM, FastSAMPrompt
|
| 77 |
os.system('wget https://huggingface.co/spaces/An-619/FastSAM/resolve/main/weights/FastSAM.pt')
|
|
@@ -106,13 +106,13 @@ def segment_solar_panel(img):
|
|
| 106 |
import gradio as gr
|
| 107 |
|
| 108 |
def greet(img):
|
| 109 |
-
|
| 110 |
-
if len(lns):
|
| 111 |
seg = segment_solar_panel(img)
|
| 112 |
-
return (seg,
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
| 116 |
return (img, "空地��。。")
|
| 117 |
|
| 118 |
iface = gr.Interface(fn=greet, inputs="image", outputs=["image", "text"])
|
|
|
|
| 1 |
import os
|
| 2 |
+
# import yolov5
|
| 3 |
+
|
| 4 |
+
# # load model
|
| 5 |
+
# model = yolov5.load('keremberke/yolov5m-license-plate')
|
| 6 |
+
|
| 7 |
+
# # set model parameters
|
| 8 |
+
# model.conf = 0.5 # NMS confidence threshold
|
| 9 |
+
# model.iou = 0.25 # NMS IoU threshold
|
| 10 |
+
# model.agnostic = False # NMS class-agnostic
|
| 11 |
+
# model.multi_label = False # NMS multiple labels per box
|
| 12 |
+
# model.max_det = 1000 # maximum number of detections per image
|
| 13 |
+
|
| 14 |
+
# # set image
|
| 15 |
+
# def license_plate_detect(img):
|
| 16 |
+
# # perform inference
|
| 17 |
+
# results = model(img, size=640)
|
| 18 |
|
| 19 |
+
# # inference with test time augmentation
|
| 20 |
+
# results = model(img, augment=True)
|
| 21 |
|
| 22 |
+
# # parse results
|
| 23 |
+
# if len(results.pred):
|
| 24 |
+
# predictions = results.pred[0]
|
| 25 |
+
# boxes = predictions[:, :4] # x1, y1, x2, y2
|
| 26 |
+
# scores = predictions[:, 4]
|
| 27 |
+
# categories = predictions[:, 5]
|
| 28 |
+
# return boxes
|
| 29 |
+
|
| 30 |
+
# from PIL import Image
|
| 31 |
+
# # image = Image.open(img)
|
| 32 |
+
# import pytesseract
|
| 33 |
+
|
| 34 |
+
# def read_license_number(img):
|
| 35 |
+
# boxes = license_plate_detect(img)
|
| 36 |
+
# if boxes:
|
| 37 |
+
# return [pytesseract.image_to_string(
|
| 38 |
+
# image.crop(bbox.tolist()))
|
| 39 |
+
# for bbox in boxes]
|
| 40 |
|
| 41 |
from transformers import CLIPProcessor, CLIPModel
|
| 42 |
vit_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
|
| 51 |
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
| 52 |
return logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
| 53 |
|
| 54 |
+
# installed_list = []
|
| 55 |
+
# # image = Image.open(requests.get(url, stream=True).raw)
|
| 56 |
+
# def check_solarplant_installed_by_license(license_number_list):
|
| 57 |
+
# if len(installed_list):
|
| 58 |
+
# return [license_number in installed_list
|
| 59 |
+
# for license_number in license_number_list]
|
| 60 |
|
| 61 |
def check_solarplant_installed_by_image(image, output_label=False):
|
| 62 |
zero_shot_class_labels = ["bus with solar panel grids",
|
|
|
|
| 66 |
return zero_shot_class_labels[probs.argmax().item()]
|
| 67 |
return probs.argmax().item() == 0
|
| 68 |
|
| 69 |
+
# def check_solarplant_broken(image):
|
| 70 |
+
# zero_shot_class_labels = ["white broken solar panel",
|
| 71 |
+
# "normal black solar panel grids"]
|
| 72 |
+
# probs = zero_shot_classification(image, zero_shot_class_labels)
|
| 73 |
+
# idx = probs.argmax().item()
|
| 74 |
+
# return zero_shot_class_labels[idx].split(" ")[1-idx]
|
| 75 |
|
| 76 |
from fastsam import FastSAM, FastSAMPrompt
|
| 77 |
os.system('wget https://huggingface.co/spaces/An-619/FastSAM/resolve/main/weights/FastSAM.pt')
|
|
|
|
| 106 |
import gradio as gr
|
| 107 |
|
| 108 |
def greet(img):
|
| 109 |
+
if check_solarplant_installed_by_image(img):
|
|
|
|
| 110 |
seg = segment_solar_panel(img)
|
| 111 |
+
return (seg, '')
|
| 112 |
+
# return (seg,
|
| 113 |
+
# "車牌: " + '; '.join(lns) + "\n\n" \
|
| 114 |
+
# + "類型: "+ check_solarplant_installed_by_image(img, True) + "\n\n" \
|
| 115 |
+
# + "狀態:" + check_solarplant_broken(img))
|
| 116 |
return (img, "空地��。。")
|
| 117 |
|
| 118 |
iface = gr.Interface(fn=greet, inputs="image", outputs=["image", "text"])
|