Spaces:
Runtime error
Runtime error
Add refactoring component
Browse files
app.py
CHANGED
|
@@ -156,12 +156,23 @@ def get_long_elements(elements, size_threshold): # Using RegEx
|
|
| 156 |
for i in range(0, len(elements[key])):
|
| 157 |
if len(re. findall(r'\w+', elements[key][i])) > size_threshold:
|
| 158 |
long_elements.append(elements[key][i])
|
| 159 |
-
|
| 160 |
if long_elements:
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
else:
|
| 164 |
-
return "
|
| 165 |
# #####################################
|
| 166 |
|
| 167 |
# ######### Complex Sentences #########
|
|
@@ -178,18 +189,29 @@ def is_complex_sentence(sentence):
|
|
| 178 |
|
| 179 |
def get_complex_sentences(elements):
|
| 180 |
|
| 181 |
-
|
| 182 |
-
|
| 183 |
for key, value in elements.items():
|
| 184 |
for i in range(0, len(elements[key])):
|
| 185 |
if is_complex_sentence(elements[key][i]):
|
| 186 |
complex_sentences.append(elements[key][i])
|
| 187 |
-
|
| 188 |
if complex_sentences:
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
else:
|
| 192 |
-
return "
|
| 193 |
|
| 194 |
# #####################################
|
| 195 |
|
|
@@ -199,103 +221,200 @@ def get_punctuations(elements):
|
|
| 199 |
punctuations = []
|
| 200 |
|
| 201 |
for key, value in elements.items():
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
|
| 206 |
if punctuations:
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
else:
|
| 210 |
-
return "
|
| 211 |
# #################################
|
| 212 |
|
| 213 |
# ########## Incorrect Actor Syntax ##########
|
| 214 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
-
|
| 217 |
|
| 218 |
-
|
| 219 |
|
| 220 |
-
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
|
| 226 |
-
|
| 227 |
|
| 228 |
def check_actor_syntax(actors):
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
else:
|
| 236 |
-
return "
|
| 237 |
# ############################################
|
| 238 |
|
| 239 |
# ########## Incorrect Goal Syntax ###########
|
| 240 |
def check_goal_syntax(goals):
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
else:
|
| 248 |
-
return "
|
| 249 |
# ############################################
|
| 250 |
|
| 251 |
# ########## Incorrect Softgoal Syntax ###########
|
| 252 |
def check_softgoal_syntax(softgoals):
|
| 253 |
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
else:
|
| 260 |
-
return "
|
| 261 |
# ############################################
|
| 262 |
|
| 263 |
# ########## Incorrect Task Syntax ###########
|
| 264 |
-
def find_NPs(sentences):
|
| 265 |
|
| 266 |
-
|
| 267 |
|
| 268 |
-
|
| 269 |
|
| 270 |
-
|
| 271 |
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
|
| 276 |
-
|
| 277 |
|
| 278 |
def check_task_syntax(tasks):
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
else:
|
| 286 |
-
return "
|
| 287 |
# ############################################
|
| 288 |
|
| 289 |
# ########## Incorrect Resource Syntax ###########
|
| 290 |
def check_resource_syntax(resources):
|
| 291 |
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
else:
|
| 298 |
-
return "
|
| 299 |
# ############################################
|
| 300 |
|
| 301 |
# ########## Similarity ###########
|
|
@@ -309,56 +428,72 @@ def get_similar_elements(elements_per_actor, similarity_threshold):
|
|
| 309 |
for i in range(len(elements_per_actor[key])):
|
| 310 |
for j in range(i+1,len(elements_per_actor[key])):
|
| 311 |
sentence_pairs.append([elements_per_actor[key][i], elements_per_actor[key][j]])
|
| 312 |
-
|
| 313 |
-
# Predict semantic similarity
|
| 314 |
semantic_similarity_scores = sentences_similarity_model.predict(sentence_pairs, show_progress_bar=True)
|
| 315 |
|
| 316 |
similar_elements = []
|
|
|
|
| 317 |
for index, value in enumerate(sentence_pairs):
|
| 318 |
if semantic_similarity_scores[index] > similarity_threshold:
|
| 319 |
similar_elements.append(value)
|
|
|
|
| 320 |
#semantic_similarity["pair_"+str(index+1)] = [value,semantic_similarity_scores[index]]
|
| 321 |
|
| 322 |
if similar_elements:
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
else:
|
| 327 |
-
return "
|
| 328 |
|
| 329 |
return semantic_similarity
|
| 330 |
# #################################
|
| 331 |
|
| 332 |
# ########## Misspelling ###########
|
| 333 |
-
def get_misspelled_words(sentence):
|
| 334 |
|
| 335 |
-
|
| 336 |
|
| 337 |
-
|
| 338 |
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
|
| 344 |
-
|
| 345 |
|
| 346 |
def check_spelling(elements):
|
| 347 |
|
| 348 |
-
|
| 349 |
-
spelling_mistakes_string = ""
|
| 350 |
|
| 351 |
for key, value in elements.items():
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
|
| 361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
# ##################################
|
| 363 |
|
| 364 |
# ########## NLI ###########
|
|
@@ -435,91 +570,228 @@ def check_entailment(decomposed_elements):
|
|
| 435 |
return result
|
| 436 |
|
| 437 |
# Contradiction
|
| 438 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
|
| 440 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 441 |
contradicting_elements = []
|
| 442 |
|
|
|
|
| 443 |
for key, value in elements_per_actor.items():
|
| 444 |
|
| 445 |
for i in range(len(elements_per_actor[key])):
|
| 446 |
for j in range(i+1,len(elements_per_actor[key])):
|
| 447 |
sentence_pairs.append([elements_per_actor[key][i], elements_per_actor[key][j]])
|
| 448 |
-
|
| 449 |
-
#print(sentence_pairs)
|
| 450 |
-
# Check contradiction
|
| 451 |
for sentence_pair in sentence_pairs:
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 456 |
|
| 457 |
if contradicting_elements:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
contradicting_elements = [' and '.join(ele) for ele in contradicting_elements]
|
| 459 |
contradicting_elements = "\n".join(contradicting_elements)
|
| 460 |
-
|
|
|
|
| 461 |
else:
|
| 462 |
-
return "
|
| 463 |
# ##########################
|
| 464 |
|
| 465 |
# ************************* User Interface *************************
|
| 466 |
|
| 467 |
-
def
|
| 468 |
|
| 469 |
output = ""
|
| 470 |
|
| 471 |
tgrl_text = parse_tgrl(tgrl_file)
|
| 472 |
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
if '
|
| 476 |
-
output
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
if '
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
|
| 487 |
-
if 'Goals Syntax' in selected_bad_smells:
|
| 488 |
-
output = output + check_goal_syntax(elements['goals']) + "\n\n"
|
| 489 |
-
|
| 490 |
-
if 'Softgoals Syntax' in selected_bad_smells:
|
| 491 |
-
output = output + check_softgoal_syntax(elements['softGoals']) + "\n\n"
|
| 492 |
-
|
| 493 |
-
if 'Tasks Syntax' in selected_bad_smells:
|
| 494 |
-
output = output + check_task_syntax(elements['tasks']) + "\n\n"
|
| 495 |
-
|
| 496 |
-
if 'Resources Syntax' in selected_bad_smells:
|
| 497 |
-
output = output + check_resource_syntax(elements['resources']) + "\n\n"
|
| 498 |
-
|
| 499 |
-
if 'Similar Elements' in selected_bad_smells:
|
| 500 |
-
output = output + get_similar_elements(elements_per_actor, similarity_threshold) + "\n\n"
|
| 501 |
-
|
| 502 |
-
if 'Spelling Mistakes' in selected_bad_smells:
|
| 503 |
-
output = output + check_spelling(elements) + "\n\n"
|
| 504 |
-
|
| 505 |
-
if 'Goal-Subgoal Mismatch' in selected_bad_smells:
|
| 506 |
-
output = output + check_entailment(decomposed_elements) + "\n\n"
|
| 507 |
-
|
| 508 |
-
if 'Contradicting Elements' in selected_bad_smells:
|
| 509 |
-
output = output + check_contradiction(elements_per_actor) + "\n\n"
|
| 510 |
-
|
| 511 |
return output
|
| 512 |
|
| 513 |
|
| 514 |
-
interface = gr.Interface(fn =
|
| 515 |
inputs = [gr.File(label="TGRL File"),
|
| 516 |
-
gr.CheckboxGroup(["
|
| 517 |
-
label="Which bad smells you want to detect?"),
|
| 518 |
-
gr.Slider(label= "
|
| 519 |
gr.Slider(label= "Similarity threshold", value = 0.9, minimum = 0, maximum = 1, step = 0.1)],
|
| 520 |
-
outputs = [gr.Textbox(label= "Detected bad smells:")],
|
| 521 |
-
title = "TGRL
|
| 522 |
-
description = "Upload your .xgrl file and we will find the bad smells for you!",
|
| 523 |
theme = gr.themes.Soft())
|
| 524 |
|
| 525 |
|
|
|
|
| 156 |
for i in range(0, len(elements[key])):
|
| 157 |
if len(re. findall(r'\w+', elements[key][i])) > size_threshold:
|
| 158 |
long_elements.append(elements[key][i])
|
| 159 |
+
|
| 160 |
if long_elements:
|
| 161 |
+
output = ""
|
| 162 |
+
for long_element in long_elements:
|
| 163 |
+
refactored_element = prompt(
|
| 164 |
+
'''You are a specialist in English linguistics.
|
| 165 |
+
You will be provided with a sentence, and your task is to summarize it in''' + str(size_threshold) + ''' words or fewer.
|
| 166 |
+
Comply with the following conditions:
|
| 167 |
+
(1) Do not convert a verb phrase to a noun phrase, and vice versa.
|
| 168 |
+
(2) Change as few words as possible.
|
| 169 |
+
Answer with the new sentence only.''',
|
| 170 |
+
long_element)
|
| 171 |
+
output = output + '"' + long_element + '" should be refactored to "' + refactored_element + '"\n'
|
| 172 |
+
#long_elements = "\n".join(long_elements)
|
| 173 |
+
return "Lengthy elements:\n" + output
|
| 174 |
else:
|
| 175 |
+
return ""
|
| 176 |
# #####################################
|
| 177 |
|
| 178 |
# ######### Complex Sentences #########
|
|
|
|
| 189 |
|
| 190 |
def get_complex_sentences(elements):
|
| 191 |
|
| 192 |
+
complex_sentences = []
|
| 193 |
+
|
| 194 |
for key, value in elements.items():
|
| 195 |
for i in range(0, len(elements[key])):
|
| 196 |
if is_complex_sentence(elements[key][i]):
|
| 197 |
complex_sentences.append(elements[key][i])
|
| 198 |
+
|
| 199 |
if complex_sentences:
|
| 200 |
+
output = ""
|
| 201 |
+
for complex_sentence in complex_sentences:
|
| 202 |
+
refactored_element = prompt(
|
| 203 |
+
'''
|
| 204 |
+
You are a specialist in English linguistics.
|
| 205 |
+
A complex sentence is a sentence with one independent clause and at least one dependent clause. A simple sentence has a single independent clause.
|
| 206 |
+
You will be provided with a complex sentence, and your task is to make it a simple sentence.
|
| 207 |
+
Do not convert a verb phrase to a noun phrase, and vice versa.
|
| 208 |
+
Answer with the new sentence only.
|
| 209 |
+
''', complex_sentence)
|
| 210 |
+
output = output + '"' + complex_sentence + '" should be refactored to "' + refactored_element + '"\n'
|
| 211 |
+
#complex_sentences = "\n".join(complex_sentences)
|
| 212 |
+
return "Complex elements:\n" + output
|
| 213 |
else:
|
| 214 |
+
return ""
|
| 215 |
|
| 216 |
# #####################################
|
| 217 |
|
|
|
|
| 221 |
punctuations = []
|
| 222 |
|
| 223 |
for key, value in elements.items():
|
| 224 |
+
for i in range(0, len(elements[key])):
|
| 225 |
+
if len(re.findall("[^\s\w\d-]", elements[key][i])) > 0:
|
| 226 |
+
punctuations.append(elements[key][i])
|
| 227 |
|
| 228 |
if punctuations:
|
| 229 |
+
output = ""
|
| 230 |
+
for punctuation in punctuations:
|
| 231 |
+
refactored_element = prompt(
|
| 232 |
+
'''
|
| 233 |
+
You are a specialist in English linguistics.
|
| 234 |
+
You will be provided with a sentence, and your task is to remove all punctuation marks.
|
| 235 |
+
Answer with the new sentence only.''', punctuation)
|
| 236 |
+
output = output + '"' + punctuation + '" should be refactored to "' + refactored_element + '"\n'
|
| 237 |
+
#punctuations = "\n".join(punctuations)
|
| 238 |
+
return "Punctuation-marked elements:\n" + output
|
| 239 |
else:
|
| 240 |
+
return ""
|
| 241 |
# #################################
|
| 242 |
|
| 243 |
# ########## Incorrect Actor Syntax ##########
|
| 244 |
+
def check_verb_or_noun_phrase(sentence):
|
| 245 |
+
|
| 246 |
+
result = prompt(
|
| 247 |
+
'''
|
| 248 |
+
You are a specialist in English linguistics.
|
| 249 |
+
You will be provided with a sentence, and your task is to determine whether the sentence is a noun phrase or a verb phrase.
|
| 250 |
+
Answer with "noun phrase" or "verb phrase" and your reasons.
|
| 251 |
+
Use JSON format with keys "answer" and "reason".''', sentence)
|
| 252 |
+
result = json.loads(result)
|
| 253 |
+
return result["answer"]
|
| 254 |
+
|
| 255 |
+
# def find_non_NPs(sentences):
|
| 256 |
|
| 257 |
+
# pipeline = TokenClassificationPipeline(model=pos_model, tokenizer=pos_tokenizer)
|
| 258 |
|
| 259 |
+
# outputs = pipeline(sentences)
|
| 260 |
|
| 261 |
+
# Non_NPs = []
|
| 262 |
|
| 263 |
+
# for idx, output in enumerate(outputs):
|
| 264 |
+
# if output[0]['entity'].startswith('V'):
|
| 265 |
+
# Non_NPs.append(sentences[idx])
|
| 266 |
|
| 267 |
+
# return Non_NPs
|
| 268 |
|
| 269 |
def check_actor_syntax(actors):
|
| 270 |
|
| 271 |
+
incorrect_actors_syntax = []
|
| 272 |
+
for actor in actors:
|
| 273 |
+
result = check_verb_or_noun_phrase(actor)
|
| 274 |
+
if result == "verb phrase":
|
| 275 |
+
incorrect_actors_syntax.append(actor)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
if incorrect_actors_syntax:
|
| 279 |
+
output = ""
|
| 280 |
+
for incorrect_actor_syntax in incorrect_actors_syntax:
|
| 281 |
+
refactored_element = prompt(
|
| 282 |
+
'''
|
| 283 |
+
You are a specialist in English linguistics.
|
| 284 |
+
You will be provided with a sentence that is a verb phrase, and your task is to make it a noun pharse representing an actor.
|
| 285 |
+
A noun phrase should start with a noun.
|
| 286 |
+
Example of actors: System, PC User, and Privacy Officer.
|
| 287 |
+
Answer with the new sentence only.''', incorrect_actor_syntax)
|
| 288 |
+
output = output + '"' + incorrect_actor_syntax + '" should be refactored to "' + refactored_element + '"\n'
|
| 289 |
+
#incorrect_actor_syntax = "\n".join(incorrect_actor_syntax)
|
| 290 |
+
return "Incorrect actors syntax:\n" + output
|
| 291 |
else:
|
| 292 |
+
return ""
|
| 293 |
# ############################################
|
| 294 |
|
| 295 |
# ########## Incorrect Goal Syntax ###########
|
| 296 |
def check_goal_syntax(goals):
|
| 297 |
|
| 298 |
+
incorrect_goals_syntax = []
|
| 299 |
+
for goal in goals:
|
| 300 |
+
result = check_verb_or_noun_phrase(goal)
|
| 301 |
+
if result == "verb phrase":
|
| 302 |
+
incorrect_goals_syntax.append(goal)
|
| 303 |
+
|
| 304 |
+
if incorrect_goals_syntax:
|
| 305 |
+
output = ""
|
| 306 |
+
for incorrect_goal_syntax in incorrect_goals_syntax:
|
| 307 |
+
refactored_element = prompt(
|
| 308 |
+
'''
|
| 309 |
+
You are a specialist in English linguistics.
|
| 310 |
+
You will be provided with a sentence that is not a noun phrase, and your task is to make it a noun pharse representing a goal.
|
| 311 |
+
A noun phrase should start with a noun.
|
| 312 |
+
For example: high data quality, fast response time, and course registration.
|
| 313 |
+
Answer with the new sentence only.''', incorrect_goal_syntax)
|
| 314 |
+
output = output + '"' + incorrect_goal_syntax + '" should be refactored to "' + refactored_element + '"\n'
|
| 315 |
+
#incorrect_goal_syntax = "\n".join(incorrect_goal_syntax)
|
| 316 |
+
return "Incorrect goals syntax:\n" + output
|
| 317 |
else:
|
| 318 |
+
return ""
|
| 319 |
# ############################################
|
| 320 |
|
| 321 |
# ########## Incorrect Softgoal Syntax ###########
|
| 322 |
def check_softgoal_syntax(softgoals):
|
| 323 |
|
| 324 |
+
incorrect_softgoals_syntax = []
|
| 325 |
+
for softgoal in softgoals:
|
| 326 |
+
result = check_verb_or_noun_phrase(softgoal)
|
| 327 |
+
if result == "verb phrase":
|
| 328 |
+
incorrect_softgoals_syntax.append(softgoal)
|
| 329 |
+
|
| 330 |
+
if incorrect_softgoals_syntax:
|
| 331 |
+
|
| 332 |
+
output = ""
|
| 333 |
+
for incorrect_softgoal_syntax in incorrect_softgoals_syntax:
|
| 334 |
+
refactored_element = prompt(
|
| 335 |
+
'''
|
| 336 |
+
You are a specialist in English linguistics.
|
| 337 |
+
You will be provided with a sentence that is not a noun phrase, and your task is to make it a noun pharse representing a goal.
|
| 338 |
+
A noun phrase should start with a noun.
|
| 339 |
+
For example: high data quality, fast response time, and course registration.
|
| 340 |
+
Answer with the new sentence only.''', incorrect_softgoal_syntax)
|
| 341 |
+
output = output + '"' + incorrect_softgoal_syntax + '" should be refactored to "' + refactored_element + '"\n'
|
| 342 |
+
#incorrect_softgoal_syntax = "\n".join(incorrect_softgoal_syntax)
|
| 343 |
+
return "Incorrect softgoals syntax:\n" + output
|
| 344 |
else:
|
| 345 |
+
return ""
|
| 346 |
# ############################################
|
| 347 |
|
| 348 |
# ########## Incorrect Task Syntax ###########
|
| 349 |
+
# def find_NPs(sentences):
|
| 350 |
|
| 351 |
+
# pipeline = TokenClassificationPipeline(model=pos_model, tokenizer=pos_tokenizer)
|
| 352 |
|
| 353 |
+
# outputs = pipeline(sentences)
|
| 354 |
|
| 355 |
+
# NPs = []
|
| 356 |
|
| 357 |
+
# for idx, output in enumerate(outputs):
|
| 358 |
+
# if not output[0]['entity'].startswith('V'):
|
| 359 |
+
# NPs.append(sentences[idx])
|
| 360 |
|
| 361 |
+
# return NPs
|
| 362 |
|
| 363 |
def check_task_syntax(tasks):
|
| 364 |
|
| 365 |
+
incorrect_tasks_syntax = []
|
| 366 |
+
for task in tasks:
|
| 367 |
+
result = check_verb_or_noun_phrase(task)
|
| 368 |
+
if result == "noun phrase":
|
| 369 |
+
incorrect_tasks_syntax.append(task)
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
if incorrect_tasks_syntax:
|
| 373 |
+
output = ""
|
| 374 |
+
for incorrect_task_syntax in incorrect_tasks_syntax:
|
| 375 |
+
refactored_element = prompt(
|
| 376 |
+
'''
|
| 377 |
+
You are a specialist in English linguistics.
|
| 378 |
+
You will be provided with a sentence that is not a verb phrase, and your task is to make it a verb pharse representing a task.
|
| 379 |
+
A verb phrase should start with a verb.
|
| 380 |
+
For example: provide maintenance services, help co-workers, and enhance quality.
|
| 381 |
+
Answer with the new sentence only.''', incorrect_task_syntax)
|
| 382 |
+
output = output + '"' + incorrect_task_syntax + '" should be refactored to "' + refactored_element + '"\n'
|
| 383 |
+
#incorrect_task_syntax = "\n".join(incorrect_task_syntax)
|
| 384 |
+
return "Incorrect tasks syntax:\n" + output
|
| 385 |
else:
|
| 386 |
+
return ""
|
| 387 |
# ############################################
|
| 388 |
|
| 389 |
# ########## Incorrect Resource Syntax ###########
|
| 390 |
def check_resource_syntax(resources):
|
| 391 |
|
| 392 |
+
if len(resources) == 0:
|
| 393 |
+
return ""
|
| 394 |
+
|
| 395 |
+
#incorrect_resources_syntax = find_non_NPs(resources)
|
| 396 |
+
incorrect_resources_syntax = []
|
| 397 |
+
for resource in resources:
|
| 398 |
+
result = check_verb_or_noun_phrase(resource)
|
| 399 |
+
if result == "verb phrase":
|
| 400 |
+
incorrect_resources_syntax.append(resource)
|
| 401 |
+
|
| 402 |
+
if incorrect_resources_syntax:
|
| 403 |
+
output = ""
|
| 404 |
+
for incorrect_resource_syntax in incorrect_resources_syntax:
|
| 405 |
+
refactored_element = prompt(
|
| 406 |
+
'''
|
| 407 |
+
You are a specialist in English linguistics.
|
| 408 |
+
You will be provided with a sentence that is not a noun phrase, and your task is to make it a noun pharse representing a resource.
|
| 409 |
+
A noun phrase should start with a noun.
|
| 410 |
+
For example: internet, database, and files system.
|
| 411 |
+
Answer with the new sentence only.''', incorrect_resource_syntax)
|
| 412 |
+
output = output + '"' + incorrect_resource_syntax + '" should be refactored to "' + refactored_element + '"\n'
|
| 413 |
+
|
| 414 |
+
#incorrect_resource_syntax = "\n".join(incorrect_resource_syntax)
|
| 415 |
+
return "Incorrect resources syntax:\n" + output
|
| 416 |
else:
|
| 417 |
+
return ""
|
| 418 |
# ############################################
|
| 419 |
|
| 420 |
# ########## Similarity ###########
|
|
|
|
| 428 |
for i in range(len(elements_per_actor[key])):
|
| 429 |
for j in range(i+1,len(elements_per_actor[key])):
|
| 430 |
sentence_pairs.append([elements_per_actor[key][i], elements_per_actor[key][j]])
|
| 431 |
+
|
| 432 |
+
# Predict semantic similarity
|
| 433 |
semantic_similarity_scores = sentences_similarity_model.predict(sentence_pairs, show_progress_bar=True)
|
| 434 |
|
| 435 |
similar_elements = []
|
| 436 |
+
|
| 437 |
for index, value in enumerate(sentence_pairs):
|
| 438 |
if semantic_similarity_scores[index] > similarity_threshold:
|
| 439 |
similar_elements.append(value)
|
| 440 |
+
#similar_elements.append('"'+value+'"')
|
| 441 |
#semantic_similarity["pair_"+str(index+1)] = [value,semantic_similarity_scores[index]]
|
| 442 |
|
| 443 |
if similar_elements:
|
| 444 |
+
result_string = ""
|
| 445 |
+
for sublist in similar_elements:
|
| 446 |
+
result_string += ' and '.join(f'"{item}"' for item in sublist) + '\n'
|
| 447 |
+
|
| 448 |
+
#similar_elements = [' and '.join('"' + ele + '"') for ele in similar_elements]
|
| 449 |
+
#similar_elements = "\n".join(similar_elements)
|
| 450 |
+
return "Similar elements:\n" + result_string
|
| 451 |
else:
|
| 452 |
+
return ""
|
| 453 |
|
| 454 |
return semantic_similarity
|
| 455 |
# #################################
|
| 456 |
|
| 457 |
# ########## Misspelling ###########
|
| 458 |
+
# def get_misspelled_words(sentence):
|
| 459 |
|
| 460 |
+
# spell = Speller(only_replacements=True)
|
| 461 |
|
| 462 |
+
# misspelled= []
|
| 463 |
|
| 464 |
+
# for word in sentence.split():
|
| 465 |
+
# correct_word = spell(word)
|
| 466 |
+
# if word != correct_word:
|
| 467 |
+
# misspelled.append([word, correct_word])
|
| 468 |
|
| 469 |
+
# return misspelled
|
| 470 |
|
| 471 |
def check_spelling(elements):
|
| 472 |
|
| 473 |
+
refactored_elements = []
|
|
|
|
| 474 |
|
| 475 |
for key, value in elements.items():
|
| 476 |
+
for i in range(0, len(elements[key])):
|
| 477 |
+
refactored_element = prompt(
|
| 478 |
+
'''
|
| 479 |
+
You are a specialist in English linguistics.
|
| 480 |
+
You will be provided with a sentence and your task is to report any misspilled words and correct the spilling if needed.
|
| 481 |
+
Answer with "correct" or "misspilled". In case the sentence is misspilled, correct it with the right spelling.
|
| 482 |
+
Use a JSON format with keys 'original sentence', 'answer', and 'correct sentence'.
|
| 483 |
+
For example: {'original sentence': 'incraese value', 'answer': 'misspilled', 'correct sentence': 'increase value'}''', elements[key][i])
|
| 484 |
+
|
| 485 |
+
refactored_element = refactored_element.replace("'", '"')
|
| 486 |
+
refactored_element = json.loads(refactored_element)
|
| 487 |
+
|
| 488 |
+
if refactored_element['answer'] == 'misspilled':
|
| 489 |
+
refactored_elements.append('"' + refactored_element["original sentence"] + '" should be written as "' + refactored_element["correct sentence"] + '"')
|
| 490 |
+
|
| 491 |
|
| 492 |
+
if refactored_elements:
|
| 493 |
+
refactored_elements = "\n".join(refactored_elements)
|
| 494 |
+
return "Misspilled elements:\n" + refactored_elements
|
| 495 |
+
else:
|
| 496 |
+
return ""
|
| 497 |
# ##################################
|
| 498 |
|
| 499 |
# ########## NLI ###########
|
|
|
|
| 570 |
return result
|
| 571 |
|
| 572 |
# Contradiction
|
| 573 |
+
def check_for_linguistic_conflict(pairs):
|
| 574 |
+
|
| 575 |
+
pairs = ",".join(str(element) for element in pairs)
|
| 576 |
+
|
| 577 |
+
contradicting_pairs = []
|
| 578 |
+
result = prompt(
|
| 579 |
+
'''
|
| 580 |
+
You are a specialist in English linguistics.
|
| 581 |
+
You will be provided with a list of sentencses pair, and your task is to determine whether each pair can be conflicting or not.
|
| 582 |
+
For example: "Inrease quality of service" AND "Cut expenses" are conflicting because increasing quality usually requires spending money.
|
| 583 |
+
For each pair, answer with "yes" or "no" with your reason in short.
|
| 584 |
+
Use a list of dictionaries format with keys "pair" and "answer". Omit "reason" from your response.''', pairs)
|
| 585 |
+
|
| 586 |
+
result = result.replace("'", '"')
|
| 587 |
+
|
| 588 |
+
results = json.loads(result)
|
| 589 |
+
for result in results:
|
| 590 |
+
if result["answer"] == "yes":
|
| 591 |
+
contradicting_pairs.append(result["pair"])
|
| 592 |
+
|
| 593 |
+
return contradicting_pairs
|
| 594 |
+
|
| 595 |
+
def find_paths_between_elements(elements, start_element, end_element, visited, path=[]):
|
| 596 |
+
|
| 597 |
+
visited[start_element] = True
|
| 598 |
+
path.append(start_element)
|
| 599 |
|
| 600 |
+
if start_element == end_element:
|
| 601 |
+
yield list(path)
|
| 602 |
+
else:
|
| 603 |
+
for contrib in elements:
|
| 604 |
+
if contrib[1] in visited: ## added
|
| 605 |
+
if contrib[0] == start_element and not visited[contrib[1]]:
|
| 606 |
+
yield from find_paths_between_elements(elements, contrib[1], end_element, visited, path)
|
| 607 |
+
|
| 608 |
+
path.pop()
|
| 609 |
+
visited[start_element] = False
|
| 610 |
+
|
| 611 |
+
def check_contradiction(elements_per_actor, contributing_elements):
|
| 612 |
+
|
| 613 |
+
pairs_to_check_1 = []
|
| 614 |
+
pairs_to_check_2 = []
|
| 615 |
+
pairs_to_check_3 = []
|
| 616 |
+
|
| 617 |
+
all_values_contributing_elements = []
|
| 618 |
+
for values_list in contributing_elements.values():
|
| 619 |
+
all_values_contributing_elements.extend(values_list)
|
| 620 |
+
|
| 621 |
+
|
| 622 |
+
sentence_pairs = []
|
| 623 |
contradicting_elements = []
|
| 624 |
|
| 625 |
+
# case 1: contradicting elements contributing similarly to other elements
|
| 626 |
for key, value in elements_per_actor.items():
|
| 627 |
|
| 628 |
for i in range(len(elements_per_actor[key])):
|
| 629 |
for j in range(i+1,len(elements_per_actor[key])):
|
| 630 |
sentence_pairs.append([elements_per_actor[key][i], elements_per_actor[key][j]])
|
| 631 |
+
|
|
|
|
|
|
|
| 632 |
for sentence_pair in sentence_pairs:
|
| 633 |
+
contribution_scores = []
|
| 634 |
+
|
| 635 |
+
for contributing_element in all_values_contributing_elements:
|
| 636 |
+
|
| 637 |
+
if contributing_element[0] == sentence_pair[0] or contributing_element[0] == sentence_pair[1]:
|
| 638 |
+
|
| 639 |
+
if contributing_element[2] == "make":
|
| 640 |
+
contribution_score = 75
|
| 641 |
+
elif contributing_element[2] == "help":
|
| 642 |
+
contribution_score = 50
|
| 643 |
+
elif contributing_element[2] == "somePositive":
|
| 644 |
+
contribution_score = 25
|
| 645 |
+
elif contributing_element[2] == "unknown":
|
| 646 |
+
contribution_score = 0
|
| 647 |
+
elif contributing_element[2] == "someNegative":
|
| 648 |
+
contribution_score = -25
|
| 649 |
+
elif contributing_element[2] == "break":
|
| 650 |
+
contribution_score = -50
|
| 651 |
+
elif contributing_element[2] == "hurt":
|
| 652 |
+
contribution_score = -75
|
| 653 |
+
else:
|
| 654 |
+
contribution_score = int(contributing_element[2])
|
| 655 |
+
|
| 656 |
+
contribution_scores.append((contributing_element[0], contribution_score))
|
| 657 |
+
|
| 658 |
+
if len(contribution_scores) < 2:
|
| 659 |
+
pairs_to_check_1.append([sentence_pair[0].replace("'", ""), sentence_pair[1].replace("'", "")])
|
| 660 |
+
else:
|
| 661 |
+
flag = 0
|
| 662 |
+
for pair in itertools.combinations(contribution_scores, r=2):
|
| 663 |
+
if pair[0][0] != pair[1][0]:
|
| 664 |
+
if pair[0][1] * pair[1][1] < 0:
|
| 665 |
+
flag = 1
|
| 666 |
+
|
| 667 |
+
if flag == 0:
|
| 668 |
+
pairs_to_check_2.append([sentence_pair[0].replace("'", ""), sentence_pair[1].replace("'", "")])
|
| 669 |
+
|
| 670 |
+
# case 2: contradicting elements contributing similarly to each other, taking into considration the full path between the two elements
|
| 671 |
+
for key, value in elements_per_actor.items():
|
| 672 |
+
for element1 in value:
|
| 673 |
+
for element2 in value:
|
| 674 |
+
if element1 != element2:
|
| 675 |
+
visited = {e: False for e in value}
|
| 676 |
+
|
| 677 |
+
for path in find_paths_between_elements(all_values_contributing_elements, element1, element2, visited):
|
| 678 |
+
|
| 679 |
+
first_edge_value = next((contrib[2] for contrib in all_values_contributing_elements if contrib[0] == path[0] and contrib[1] == path[1]), None)
|
| 680 |
+
last_edge_value = next((contrib[2] for contrib in all_values_contributing_elements if contrib[0] == path[-2] and contrib[1] == path[-1]), None)
|
| 681 |
+
|
| 682 |
+
if first_edge_value is not None and last_edge_value is not None and int(first_edge_value) * int(last_edge_value) > 0:
|
| 683 |
+
pairs_to_check_3.append([sentence_pair[0].replace("'", ""), sentence_pair[1].replace("'", "")])
|
| 684 |
+
|
| 685 |
+
pairs_to_check = pairs_to_check_1 + pairs_to_check_2 + pairs_to_check_3
|
| 686 |
+
|
| 687 |
+
# Initialize an empty list to store the divided lists
|
| 688 |
+
divided_lists = []
|
| 689 |
+
|
| 690 |
+
# Iterate over the long list and create sublists of 30 items each
|
| 691 |
+
for i in range(0, len(pairs_to_check), 30):
|
| 692 |
+
sublist = pairs_to_check[i:i + 30]
|
| 693 |
+
divided_lists.append(sublist)
|
| 694 |
+
|
| 695 |
+
for divided_list in divided_lists:
|
| 696 |
+
contradicting_elements = contradicting_elements + check_for_linguistic_conflict(divided_list)
|
| 697 |
|
| 698 |
if contradicting_elements:
|
| 699 |
+
# Using a set to store unique sublists
|
| 700 |
+
contradicting_elements = set(tuple(sublist) for sublist in contradicting_elements)
|
| 701 |
+
# Converting back to a list of lists
|
| 702 |
+
contradicting_elements = [list(sublist) for sublist in contradicting_elements]
|
| 703 |
+
|
| 704 |
contradicting_elements = [' and '.join(ele) for ele in contradicting_elements]
|
| 705 |
contradicting_elements = "\n".join(contradicting_elements)
|
| 706 |
+
|
| 707 |
+
return "Conflicting elements:\n" + contradicting_elements
|
| 708 |
else:
|
| 709 |
+
return ""
|
| 710 |
# ##########################
|
| 711 |
|
| 712 |
# ************************* User Interface *************************
|
| 713 |
|
| 714 |
+
def detect_bad_smells(tgrl_file, selected_bad_smells, size_threshold, similarity_threshold):
|
| 715 |
|
| 716 |
output = ""
|
| 717 |
|
| 718 |
tgrl_text = parse_tgrl(tgrl_file)
|
| 719 |
|
| 720 |
+
all_elements, elements_per_actor, decomposed_elements, contributing_elements = extract_elements(tgrl_text)
|
| 721 |
+
|
| 722 |
+
if 'Lengthy element' in selected_bad_smells:
|
| 723 |
+
print(output)
|
| 724 |
+
result = get_long_elements(all_elements, size_threshold)
|
| 725 |
+
if result != "":
|
| 726 |
+
output = output + result + "\n\n"
|
| 727 |
+
|
| 728 |
+
if 'Complex element' in selected_bad_smells:
|
| 729 |
+
result = get_complex_sentences(all_elements)
|
| 730 |
+
if result != "":
|
| 731 |
+
output = output + result + "\n\n"
|
| 732 |
+
|
| 733 |
+
if 'Punctuation-marked element' in selected_bad_smells:
|
| 734 |
+
result = get_punctuations(all_elements)
|
| 735 |
+
if result != "":
|
| 736 |
+
output = output + result + "\n\n"
|
| 737 |
+
|
| 738 |
+
if 'Incorrect actor syntax' in selected_bad_smells:
|
| 739 |
+
result = check_actor_syntax(all_elements['actors'])
|
| 740 |
+
if result != "":
|
| 741 |
+
output = output + result + "\n\n"
|
| 742 |
+
|
| 743 |
+
if 'Incorrect goal syntax' in selected_bad_smells:
|
| 744 |
+
result = check_goal_syntax(all_elements['goals'])
|
| 745 |
+
if result != "":
|
| 746 |
+
output = output + result + "\n\n"
|
| 747 |
+
|
| 748 |
+
if 'Incorrect softgoal syntax' in selected_bad_smells:
|
| 749 |
+
result = check_softgoal_syntax(all_elements['softGoals'])
|
| 750 |
+
if result != "":
|
| 751 |
+
output = output + result + "\n\n"
|
| 752 |
+
|
| 753 |
+
if 'Incorrect task syntax' in selected_bad_smells:
|
| 754 |
+
result = check_task_syntax(all_elements['tasks'])
|
| 755 |
+
if result != "":
|
| 756 |
+
output = output + result + "\n\n"
|
| 757 |
+
|
| 758 |
+
if 'Incorrect resource syntax' in selected_bad_smells:
|
| 759 |
+
result = check_resource_syntax(all_elements['resources'])
|
| 760 |
+
if result != "":
|
| 761 |
+
output = output + result + "\n\n"
|
| 762 |
+
|
| 763 |
+
if 'Similar elements' in selected_bad_smells:
|
| 764 |
+
result = get_similar_elements(elements_per_actor, similarity_threshold)
|
| 765 |
+
if result != "":
|
| 766 |
+
output = output + result + "\n\n"
|
| 767 |
+
|
| 768 |
+
if 'Misspelled element' in selected_bad_smells:
|
| 769 |
+
result = check_spelling(all_elements)
|
| 770 |
+
if result != "":
|
| 771 |
+
output = output + result + "\n\n"
|
| 772 |
+
|
| 773 |
+
if 'Goal/Task and Sub-goal/Sub-task mismatch' in selected_bad_smells:
|
| 774 |
+
result = check_entailment(decomposed_elements)
|
| 775 |
+
if result != "":
|
| 776 |
+
output = output + result + "\n\n"
|
| 777 |
+
|
| 778 |
+
if 'Conflicting elements' in selected_bad_smells:
|
| 779 |
+
result = check_contradiction(elements_per_actor, contributing_elements)
|
| 780 |
+
if result != "":
|
| 781 |
+
output = output + result + "\n\n"
|
| 782 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 783 |
return output
|
| 784 |
|
| 785 |
|
| 786 |
+
interface = gr.Interface(fn = detect_bad_smells,
|
| 787 |
inputs = [gr.File(label="TGRL File"),
|
| 788 |
+
gr.CheckboxGroup(["Lengthy element", "Complex element", "Punctuation-marked element", "Incorrect actor syntax", "Incorrect goal syntax", "Incorrect softgoal syntax", "Incorrect task syntax", "Incorrect resource syntax", "Similar elements", "Misspelled element", "Goal/Task and Sub-goal/Sub-task mismatch", "Conflicting elements"],
|
| 789 |
+
label="Which bad smells you want to detect and refactor?"),
|
| 790 |
+
gr.Slider(label= "Length threshold", value = 5, minimum = 2, maximum = 10, step = 1),
|
| 791 |
gr.Slider(label= "Similarity threshold", value = 0.9, minimum = 0, maximum = 1, step = 0.1)],
|
| 792 |
+
outputs = [gr.Textbox(label= "Detected and refactored bad smells:")],
|
| 793 |
+
title = "TGRL Bad Smells Detection and Refactoring",
|
| 794 |
+
description = "Upload your .xgrl file and we will find the bad smells and refactor them for you!",
|
| 795 |
theme = gr.themes.Soft())
|
| 796 |
|
| 797 |
|