Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| import torch.nn.functional as F | |
| from facenet_pytorch import MTCNN, InceptionResnetV1 | |
| import os | |
| import numpy as np | |
| from PIL import Image | |
| import zipfile | |
| import cv2 | |
| from pytorch_grad_cam import GradCAM | |
| from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget | |
| from pytorch_grad_cam.utils.image import show_cam_on_image | |
| from transformers import pipeline | |
| with zipfile.ZipFile("examples.zip","r") as zip_ref: | |
| zip_ref.extractall(".") | |
| pipe = pipeline(model="not-lain/deepfake",trust_remote_code=True) | |
| EXAMPLES_FOLDER = 'examples' | |
| examples_names = os.listdir(EXAMPLES_FOLDER) | |
| examples = [] | |
| for example_name in examples_names: | |
| example_path = os.path.join(EXAMPLES_FOLDER, example_name) | |
| label = example_name.split('_')[0] | |
| example = { | |
| 'path': example_path, | |
| 'label': label | |
| } | |
| examples.append(example) | |
| np.random.shuffle(examples) # shuffle | |
| def predict(input_image:Image.Image, true_label:str): | |
| out = pipe.predict(input_image) | |
| confidences,face_with_mask = out["confidences"], out["face_with_mask"] | |
| return confidences, true_label, face_with_mask | |
| interface = gr.Interface( | |
| fn=predict, | |
| inputs=[ | |
| gr.Image(label="Input Image", type="filepath"), | |
| "text" | |
| ], | |
| outputs=[ | |
| gr.Label(label="Class"), | |
| "text", | |
| gr.Image(label="Face with Explainability") | |
| ], | |
| examples=[[examples[i]["path"], examples[i]["label"]] for i in range(10)] | |
| ).launch() |