import gradio as gr import torch EXAMPLE_MD = """ ```python import torch t1 = torch.arange({n1}).view({dim1}) t2 = torch.arange({n2}).view({dim2}) (t1 @ t2).shape = {out_shape} ``` """ def generate_example(dim1: list, dim2: list): n1 = 1 n2 = 1 for i in dim1: n1 *= i for i in dim2: n2 *= i t1 = torch.arange(n1).view(dim1) t2 = torch.arange(n2).view(dim2) try: out_shape = list((t1 @ t2).shape) except RuntimeError: out_shape = "error" return n1,dim1,n2,dim2,out_shape def sanitize_dimention(dim): if dim is None: gr.Error("one of the dimentions is empty, please fill it") if "[" in dim: dim = dim.replace("[", "") if "]" in dim: dim = dim.replace("]", "") if "," in dim: dim = dim.replace(",", " ").strip() out = [int(i.strip()) for i in dim.split()] else: out = [int(dim.strip())] if 0 in out: gr.Error( "Found the number 0 in one of the dimensions which is not allowed, consider using 1 instead" ) return out def predict(dim1, dim2): dim1 = sanitize_dimention(dim1) dim2 = sanitize_dimention(dim2) n1,dim1,n2,dim2,out_shape = generate_example(dim1, dim2) # TODO # add code exmplanation here return EXAMPLE_MD.format( n1=str(n1), dim1=str(dim1), s2=str(n2), dim2=str(dim2), out_shape=str(out_shape) ) demo = gr.Interface( predict, inputs=["text", "text"], outputs=["markdown"], examples=[["1,2,3", "5,3,7"], ["1,2,3", "5,2,7"]], ) demo.launch(debug=True)