Update app.py
Browse files
app.py
CHANGED
@@ -1,103 +1,35 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
-
|
4 |
-
|
5 |
-
@st.cache
|
6 |
-
def load_data():
|
7 |
-
supported_languages = [
|
8 |
-
'ar_AR',
|
9 |
-
'cs_CZ',
|
10 |
-
'de_DE',
|
11 |
-
'en_XX',
|
12 |
-
'es_XX',
|
13 |
-
'et_EE',
|
14 |
-
'fi_FI',
|
15 |
-
'fr_XX',
|
16 |
-
'gu_IN',
|
17 |
-
'hi_IN',
|
18 |
-
'it_IT',
|
19 |
-
'ja_XX',
|
20 |
-
'kk_KZ',
|
21 |
-
'ko_KR',
|
22 |
-
'lt_LT',
|
23 |
-
'lv_LV',
|
24 |
-
'my_MM',
|
25 |
-
'ne_NP',
|
26 |
-
'nl_XX',
|
27 |
-
'ro_RO',
|
28 |
-
'ru_RU',
|
29 |
-
'si_LK',
|
30 |
-
'tr_TR',
|
31 |
-
'vi_VN',
|
32 |
-
'zh_CN',
|
33 |
-
'af_ZA',
|
34 |
-
'az_AZ',
|
35 |
-
'bn_IN',
|
36 |
-
'fa_IR',
|
37 |
-
'he_IL',
|
38 |
-
'hr_HR',
|
39 |
-
'id_ID',
|
40 |
-
'ka_GE',
|
41 |
-
'km_KH',
|
42 |
-
'mk_MK',
|
43 |
-
'ml_IN',
|
44 |
-
'mn_MN',
|
45 |
-
'mr_IN',
|
46 |
-
'pl_PL',
|
47 |
-
'ps_AF',
|
48 |
-
'pt_XX',
|
49 |
-
'sv_SE',
|
50 |
-
'sw_KE',
|
51 |
-
'ta_IN',
|
52 |
-
'te_IN',
|
53 |
-
'th_TH',
|
54 |
-
'tl_XX',
|
55 |
-
'uk_UA',
|
56 |
-
'ur_PK',
|
57 |
-
'xh_ZA',
|
58 |
-
'gl_ES',
|
59 |
-
'sl_SI'
|
60 |
-
]
|
61 |
-
return {k.split('_')[0]:k for k in supported_languages}
|
62 |
|
63 |
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
64 |
def load_model():
|
65 |
-
model_name = "
|
66 |
-
model =
|
67 |
-
tokenizer =
|
68 |
return (model, tokenizer)
|
69 |
|
70 |
data = load_data()
|
71 |
|
72 |
-
def
|
73 |
-
src_lang = detect(text)
|
74 |
-
if src_lang in data:
|
75 |
tokenizer.src_lang = src_lang
|
76 |
encoded_txt = tokenizer(text, return_tensors="pt")
|
77 |
generated_tokens = model.generate(
|
78 |
-
**encoded_txt
|
79 |
-
forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]
|
80 |
)
|
81 |
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
82 |
-
else:
|
83 |
-
print(f"Language {src_lang} not found")
|
84 |
-
return
|
85 |
|
86 |
-
st.title("
|
87 |
|
88 |
|
89 |
-
text = st.text_input(f"
|
90 |
|
91 |
-
st.text("What you wrote: ")
|
|
|
92 |
|
93 |
-
st.
|
94 |
-
|
95 |
-
st.text("English Translation: ")
|
96 |
|
97 |
if text:
|
98 |
model, tokenizer = load_model()
|
99 |
-
translated_text =
|
100 |
-
st.write(translated_text[0] if translated_text else "
|
101 |
-
|
102 |
|
103 |
-
)
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import T5ForConditionalGeneration, T5TokenizerFast
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
5 |
def load_model():
|
6 |
+
model_name = "north/demo-nynorsk-base"
|
7 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
8 |
+
tokenizer = T5TokenizerFast.from_pretrained(model_name)
|
9 |
return (model, tokenizer)
|
10 |
|
11 |
data = load_data()
|
12 |
|
13 |
+
def translate_to_nynorsk(model, tokenizer, text):
|
|
|
|
|
14 |
tokenizer.src_lang = src_lang
|
15 |
encoded_txt = tokenizer(text, return_tensors="pt")
|
16 |
generated_tokens = model.generate(
|
17 |
+
**encoded_txt
|
|
|
18 |
)
|
19 |
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
|
|
|
|
|
|
20 |
|
21 |
+
st.title("Translate To Nynorsk")
|
22 |
|
23 |
|
24 |
+
text = st.text_input(f"Bokmål text: ")
|
25 |
|
26 |
+
#st.text("What you wrote: ")
|
27 |
+
#st.write(text)
|
28 |
|
29 |
+
st.text("Nynorsk Translation: ")
|
|
|
|
|
30 |
|
31 |
if text:
|
32 |
model, tokenizer = load_model()
|
33 |
+
translated_text = translate_to_nynorsk(model, tokenizer, text)
|
34 |
+
st.write(translated_text[0] if translated_text else "Unknown Error Translating Text"
|
|
|
35 |
|
|