test app
Browse files
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langdetect import detect
|
3 |
+
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
4 |
+
|
5 |
+
|
6 |
+
@st.cache
|
7 |
+
def load_data():
|
8 |
+
supported_languages = [
|
9 |
+
'ar_AR',
|
10 |
+
'cs_CZ',
|
11 |
+
'de_DE',
|
12 |
+
'en_XX',
|
13 |
+
'es_XX',
|
14 |
+
'et_EE',
|
15 |
+
'fi_FI',
|
16 |
+
'fr_XX',
|
17 |
+
'gu_IN',
|
18 |
+
'hi_IN',
|
19 |
+
'it_IT',
|
20 |
+
'ja_XX',
|
21 |
+
'kk_KZ',
|
22 |
+
'ko_KR',
|
23 |
+
'lt_LT',
|
24 |
+
'lv_LV',
|
25 |
+
'my_MM',
|
26 |
+
'ne_NP',
|
27 |
+
'nl_XX',
|
28 |
+
'ro_RO',
|
29 |
+
'ru_RU',
|
30 |
+
'si_LK',
|
31 |
+
'tr_TR',
|
32 |
+
'vi_VN',
|
33 |
+
'zh_CN',
|
34 |
+
'af_ZA',
|
35 |
+
'az_AZ',
|
36 |
+
'bn_IN',
|
37 |
+
'fa_IR',
|
38 |
+
'he_IL',
|
39 |
+
'hr_HR',
|
40 |
+
'id_ID',
|
41 |
+
'ka_GE',
|
42 |
+
'km_KH',
|
43 |
+
'mk_MK',
|
44 |
+
'ml_IN',
|
45 |
+
'mn_MN',
|
46 |
+
'mr_IN',
|
47 |
+
'pl_PL',
|
48 |
+
'ps_AF',
|
49 |
+
'pt_XX',
|
50 |
+
'sv_SE',
|
51 |
+
'sw_KE',
|
52 |
+
'ta_IN',
|
53 |
+
'te_IN',
|
54 |
+
'th_TH',
|
55 |
+
'tl_XX',
|
56 |
+
'uk_UA',
|
57 |
+
'ur_PK',
|
58 |
+
'xh_ZA',
|
59 |
+
'gl_ES',
|
60 |
+
'sl_SI'
|
61 |
+
]
|
62 |
+
return {k.split('_')[0]:k for k in supported_languages}
|
63 |
+
|
64 |
+
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
65 |
+
def load_model():
|
66 |
+
model_name = "facebook/mbart-large-50-many-to-many-mmt"
|
67 |
+
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
68 |
+
tokenizer = MBart50TokenizerFast.from_pretrained(model_name)
|
69 |
+
return (model, tokenizer)
|
70 |
+
|
71 |
+
data = load_data()
|
72 |
+
|
73 |
+
def translate_to_english(model, tokenizer, text):
|
74 |
+
src_lang = detect(text)
|
75 |
+
if src_lang in data:
|
76 |
+
tokenizer.src_lang = src_lang
|
77 |
+
encoded_txt = tokenizer(text, return_tensors="pt")
|
78 |
+
generated_tokens = model.generate(
|
79 |
+
**encoded_txt,
|
80 |
+
forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]
|
81 |
+
)
|
82 |
+
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
83 |
+
else:
|
84 |
+
print(f"Language {src_lang} not found")
|
85 |
+
return
|
86 |
+
|
87 |
+
st.title("Auto Translate (To English)")
|
88 |
+
|
89 |
+
|
90 |
+
text = st.text_input(f"Write in any (1 of {len(data.keys())}) language")
|
91 |
+
|
92 |
+
st.text("What you wrote: ")
|
93 |
+
|
94 |
+
st.write(text)
|
95 |
+
|
96 |
+
st.text("English Translation: ")
|
97 |
+
|
98 |
+
if text:
|
99 |
+
model, tokenizer = load_model()
|
100 |
+
translated_text = translate_to_english(model, tokenizer, text)
|
101 |
+
st.write(translated_text[0] if translated_text else "No translation found"
|
102 |
+
|
103 |
+
|
104 |
+
)
|