import streamlit as st import pickle as pk from sklearn.linear_model import LinearRegression import numpy as np import pandas as pd model = pk.load(open(r"abc.pickle", "rb")) st.title("Life Expectancy Predictor") Birth_Rate = st.text_input("Birth Rate") Fertility_Rate = st.text_input("Fertility Rate") Infant_mortality = st.text_input("Infant mortality per 1000 births") Maternal_mortality_ratio = st.text_input("Maternal mortality per 100000 births") Physicians_per_thousand = st.text_input("Physicians per 1000") k = st.button("Predict") if k: x = pd.DataFrame([[Birth_Rate,Fertility_Rate,Infant_mortality,Maternal_mortality_ratio,Physicians_per_thousand]]) x.columns = ["Birth Rate","Fertility Rate","Infant mortality","Maternal mortality ratio","Physicians per thousand"] prediction = model.predict(x) st.markdown(np.round(prediction[0],2))