pip install -r requirements.txt import streamlit as st import pickle as pk import sklearn from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd model = pk.load(open(r"abc.pickle", "rb")) st.title("Life Expectancy Predictor") Birth_Rate = st.text_input("Birth Rate") Fertility_Rate = st.text_input("Fertility Rate") Infant_mortality = st.text_input("Infant mortality") Maternal_mortality_ratio = st.text_input("Maternal mortality ratio") Physicians_per_thousand = st.text_input("Physicians per thousand") k = st.button("Predict") if k: x = pd.DataFrame([[Birth_Rate,Fertility_Rate,Infant_mortality,Maternal_mortality_ratio,Physicians_per_thousand]]) x.columns = ["Birth Rate","Fertility Rate","Infant mortality","Maternal mortality ratio","Physicians per thousand"] prediction = model.predict(x) st.markdown(prediction)