{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "6f434067", "metadata": {}, "outputs": [], "source": [ "from fastai.vision.all import *\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "id": "072b5286", "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "import pandas as pd\n", "pd.plotting.register_matplotlib_converters()\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 3, "id": "9688a933", "metadata": {}, "outputs": [], "source": [ "path = r\"C:\\Users\\moham\\OneDrive\\Documents\\ML data\\world-data-2023.csv\"\n", "\n", "data = pd.read_csv(path)" ] }, { "cell_type": "code", "execution_count": 4, "id": "0ab8ebde", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Country | \n", "Density\\n(P/Km2) | \n", "Abbreviation | \n", "Agricultural Land( %) | \n", "Land Area(Km2) | \n", "Armed Forces size | \n", "Birth Rate | \n", "Calling Code | \n", "Capital/Major City | \n", "Co2-Emissions | \n", "... | \n", "Out of pocket health expenditure | \n", "Physicians per thousand | \n", "Population | \n", "Population: Labor force participation (%) | \n", "Tax revenue (%) | \n", "Total tax rate | \n", "Unemployment rate | \n", "Urban_population | \n", "Latitude | \n", "Longitude | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "Afghanistan | \n", "60 | \n", "AF | \n", "58.10% | \n", "652,230 | \n", "323,000 | \n", "32.49 | \n", "93.0 | \n", "Kabul | \n", "8,672 | \n", "... | \n", "78.40% | \n", "0.28 | \n", "38,041,754 | \n", "48.90% | \n", "9.30% | \n", "71.40% | \n", "11.12% | \n", "9,797,273 | \n", "33.939110 | \n", "67.709953 | \n", "
1 | \n", "Albania | \n", "105 | \n", "AL | \n", "43.10% | \n", "28,748 | \n", "9,000 | \n", "11.78 | \n", "355.0 | \n", "Tirana | \n", "4,536 | \n", "... | \n", "56.90% | \n", "1.20 | \n", "2,854,191 | \n", "55.70% | \n", "18.60% | \n", "36.60% | \n", "12.33% | \n", "1,747,593 | \n", "41.153332 | \n", "20.168331 | \n", "
2 | \n", "Algeria | \n", "18 | \n", "DZ | \n", "17.40% | \n", "2,381,741 | \n", "317,000 | \n", "24.28 | \n", "213.0 | \n", "Algiers | \n", "150,006 | \n", "... | \n", "28.10% | \n", "1.72 | \n", "43,053,054 | \n", "41.20% | \n", "37.20% | \n", "66.10% | \n", "11.70% | \n", "31,510,100 | \n", "28.033886 | \n", "1.659626 | \n", "
3 | \n", "Andorra | \n", "164 | \n", "AD | \n", "40.00% | \n", "468 | \n", "NaN | \n", "7.20 | \n", "376.0 | \n", "Andorra la Vella | \n", "469 | \n", "... | \n", "36.40% | \n", "3.33 | \n", "77,142 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "67,873 | \n", "42.506285 | \n", "1.521801 | \n", "
4 | \n", "Angola | \n", "26 | \n", "AO | \n", "47.50% | \n", "1,246,700 | \n", "117,000 | \n", "40.73 | \n", "244.0 | \n", "Luanda | \n", "34,693 | \n", "... | \n", "33.40% | \n", "0.21 | \n", "31,825,295 | \n", "77.50% | \n", "9.20% | \n", "49.10% | \n", "6.89% | \n", "21,061,025 | \n", "-11.202692 | \n", "17.873887 | \n", "
5 rows × 35 columns
\n", "DecisionTreeRegressor(random_state=1)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
DecisionTreeRegressor(random_state=1)
\n", " | Birth Rate | \n", "Fertility Rate | \n", "Infant mortality | \n", "Maternal mortality ratio | \n", "Physicians per thousand | \n", "
---|---|---|---|---|---|
0 | \n", "32.49 | \n", "4.47 | \n", "47.9 | \n", "638.0 | \n", "0.28 | \n", "
1 | \n", "11.78 | \n", "1.62 | \n", "7.8 | \n", "15.0 | \n", "1.20 | \n", "
2 | \n", "24.28 | \n", "3.02 | \n", "20.1 | \n", "112.0 | \n", "1.72 | \n", "
4 | \n", "40.73 | \n", "5.52 | \n", "51.6 | \n", "241.0 | \n", "0.21 | \n", "
5 | \n", "15.33 | \n", "1.99 | \n", "5.0 | \n", "42.0 | \n", "2.76 | \n", "