Life_expectancy / app.py
norsu's picture
Update app.py
b393cad
raw
history blame
846 Bytes
import streamlit as st
import pickle as pk
import sklearn
from sklearn.tree import DecisionTreeRegressor
import numpy as np
import pandas as pd
model = pk.load(open(r"abc.pickle", "rb"))
st.title("Life Expectancy Predictor")
Birth_Rate = st.text_input("Birth Rate")
Fertility_Rate = st.text_input("Fertility Rate")
Infant_mortality = st.text_input("Infant mortality")
Maternal_mortality_ratio = st.text_input("Maternal mortality ratio")
Physicians_per_thousand = st.text_input("Physicians per thousand")
k = st.button("Predict")
if k:
x = pd.DataFrame([[Birth_Rate,Fertility_Rate,Infant_mortality,Maternal_mortality_ratio,Physicians_per_thousand]])
x.columns = ["Birth Rate","Fertility Rate","Infant mortality","Maternal mortality ratio","Physicians per thousand"]
prediction = model.predict(x)
st.markdown(prediction[0])