Spaces:
Sleeping
Sleeping
Sahil Borhade
commited on
Upload 6 files
Browse files- clustered_job_titles.csv +0 -0
- kmeans_model-1.pkl +3 -0
- main.py +71 -0
- processing.py +164 -0
- requirements.txt +4 -0
- vectorizer_model.pkl +3 -0
clustered_job_titles.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
kmeans_model-1.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f50b7873e093fac469d3148a723772123d733a0e838d4d91bc1581512fd6d28a
|
3 |
+
size 1918483
|
main.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
import logging
|
5 |
+
from processing import JobTitlePreprocessor # Import your preprocessor class
|
6 |
+
|
7 |
+
# Configure logging for errors
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
# Load the pre-trained models
|
12 |
+
vectorizer = joblib.load('vectorizer_model.pkl')
|
13 |
+
kmeans_model = joblib.load('kmeans_model-1.pkl')
|
14 |
+
|
15 |
+
# Initialize the preprocessor
|
16 |
+
preprocessor = JobTitlePreprocessor()
|
17 |
+
|
18 |
+
# Streamlit app title
|
19 |
+
st.title("Job Title Clustering App")
|
20 |
+
|
21 |
+
# Input fields for job titles
|
22 |
+
job_title_1 = st.text_input("Enter the first job title:")
|
23 |
+
job_title_2 = st.text_input("Enter the second job title:")
|
24 |
+
|
25 |
+
# Button to process the inputs
|
26 |
+
if st.button("Submit"):
|
27 |
+
if not job_title_1 or not job_title_2:
|
28 |
+
st.error("Please enter both job titles.")
|
29 |
+
else:
|
30 |
+
try:
|
31 |
+
# Preprocess the input job titles
|
32 |
+
clean_title_1 = preprocessor.preprocess(job_title_1)
|
33 |
+
clean_title_2 = preprocessor.preprocess(job_title_2)
|
34 |
+
|
35 |
+
# Log the preprocessed titles
|
36 |
+
logger.info(f"Preprocessed Title 1: {clean_title_1}")
|
37 |
+
logger.info(f"Preprocessed Title 2: {clean_title_2}")
|
38 |
+
|
39 |
+
# Vectorize the preprocessed job titles
|
40 |
+
title_vector_1 = vectorizer.transform([clean_title_1])
|
41 |
+
title_vector_2 = vectorizer.transform([clean_title_2])
|
42 |
+
|
43 |
+
# Predict clusters for each job title
|
44 |
+
cluster_1 = kmeans_model.predict(title_vector_1)[0]
|
45 |
+
cluster_2 = kmeans_model.predict(title_vector_2)[0]
|
46 |
+
|
47 |
+
# Display results
|
48 |
+
st.write(f"Cluster for '{job_title_1}': {cluster_1}")
|
49 |
+
st.write(f"Cluster for '{job_title_2}': {cluster_2}")
|
50 |
+
|
51 |
+
if cluster_1 == cluster_2:
|
52 |
+
st.success(f"The job titles '{job_title_1}' and '{job_title_2}' belong to the same cluster!")
|
53 |
+
else:
|
54 |
+
st.warning(f"The job titles '{job_title_1}' and '{job_title_2}' do not belong to the same cluster.")
|
55 |
+
|
56 |
+
# Display top words for the predicted clusters
|
57 |
+
def get_top_words(cluster, vectorizer, kmeans_model):
|
58 |
+
feature_names = vectorizer.get_feature_names_out()
|
59 |
+
top_word_indices = np.argsort(kmeans_model.cluster_centers_[cluster])[::-1][:5]
|
60 |
+
top_words = [feature_names[i] for i in top_word_indices]
|
61 |
+
return top_words
|
62 |
+
|
63 |
+
top_words_1 = get_top_words(cluster_1, vectorizer, kmeans_model)
|
64 |
+
top_words_2 = get_top_words(cluster_2, vectorizer, kmeans_model)
|
65 |
+
|
66 |
+
st.write(f"Top words in Cluster {cluster_1}: {', '.join(top_words_1)}")
|
67 |
+
st.write(f"Top words in Cluster {cluster_2}: {', '.join(top_words_2)}")
|
68 |
+
|
69 |
+
except Exception as e:
|
70 |
+
logger.error(f"Error occurred: {e}", exc_info=True)
|
71 |
+
st.error(f"An error occurred: {e}")
|
processing.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import re
|
3 |
+
import logging
|
4 |
+
|
5 |
+
# Configure logging
|
6 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
7 |
+
logger = logging.getLogger(__name__)
|
8 |
+
|
9 |
+
class JobTitlePreprocessor:
|
10 |
+
"""Preprocesses job titles by converting to lowercase, removing unwanted words,
|
11 |
+
special characters, numbers greater than 10, and content from location, states, regions, etc."""
|
12 |
+
|
13 |
+
def __init__(self):
|
14 |
+
# Define unwanted words and initialize counters
|
15 |
+
self.unwanted_words = ['remote', 'hybrid', 'flexible location', 'location', 'open to work',
|
16 |
+
'role', 'job', 'level', 'remot']
|
17 |
+
self.location_removed_count = 0
|
18 |
+
self.unwanted_words_removed_count = 0
|
19 |
+
self.brackets_removed_count = 0
|
20 |
+
self.state_region_removed_count = 0
|
21 |
+
self.numbers_removed_count = 0
|
22 |
+
|
23 |
+
def remove_location_unwanted_words_brackets(self, row):
|
24 |
+
"""Removes parts of the title based on location, unwanted words, bracketed content,
|
25 |
+
numbers greater than 10, and also removes symbols other than alphanumeric."""
|
26 |
+
title = row['titles_title']
|
27 |
+
location = row['LOCATION']
|
28 |
+
states = row.get('STATES', '') # Get values from 'STATES' column if present
|
29 |
+
region_state = row.get('REGION_STATE', '') # Get values from 'REGION_STATE' column if present
|
30 |
+
county = row.get('COUNTY', '') # Get values from 'COUNTY' column if present
|
31 |
+
city = row.get('city', '') # Get values from 'city' column if present
|
32 |
+
|
33 |
+
# Ensure title is a string
|
34 |
+
if isinstance(title, str):
|
35 |
+
# Remove location if present in the title
|
36 |
+
if isinstance(location, str) and re.search(r'\b{}\b'.format(re.escape(location)), title, flags=re.IGNORECASE):
|
37 |
+
title = re.sub(r'\b{}\b'.format(re.escape(location)), '', title, flags=re.IGNORECASE)
|
38 |
+
self.location_removed_count += 1
|
39 |
+
|
40 |
+
# Remove unwanted words
|
41 |
+
for word in self.unwanted_words:
|
42 |
+
pattern = r'\b{}\b'.format(re.escape(word))
|
43 |
+
if re.search(pattern, title, flags=re.IGNORECASE):
|
44 |
+
title = re.sub(pattern, '', title, flags=re.IGNORECASE)
|
45 |
+
self.unwanted_words_removed_count += 1
|
46 |
+
|
47 |
+
# Remove content from STATES, REGION_STATE, COUNTY, and city
|
48 |
+
for region in [states, region_state, county, city]:
|
49 |
+
if isinstance(region, str) and re.search(r'\b{}\b'.format(re.escape(region)), title, flags=re.IGNORECASE):
|
50 |
+
title = re.sub(r'\b{}\b'.format(re.escape(region)), '', title, flags=re.IGNORECASE)
|
51 |
+
self.state_region_removed_count += 1
|
52 |
+
|
53 |
+
# Remove content within brackets
|
54 |
+
if re.search(r'\[.*?\]|\(.*?\)|\{.*?\}', title):
|
55 |
+
title = re.sub(r'\[.*?\]|\(.*?\)|\{.*?\}', '', title)
|
56 |
+
self.brackets_removed_count += 1
|
57 |
+
|
58 |
+
# Remove any non-alphanumeric characters (keeping spaces)
|
59 |
+
title = re.sub(r'[^a-zA-Z0-9\s]', '', title)
|
60 |
+
|
61 |
+
# Remove numbers greater than 10
|
62 |
+
if re.search(r'\b(?:[1-9][0-9]+|1[1-9]|[2-9][0-9])\b', title):
|
63 |
+
title = re.sub(r'\b(?:[1-9][0-9]+|1[1-9]|[2-9][0-9])\b', '', title)
|
64 |
+
self.numbers_removed_count += 1
|
65 |
+
|
66 |
+
# Clean up extra spaces
|
67 |
+
title = re.sub(r'\s+', ' ', title).strip()
|
68 |
+
|
69 |
+
return title
|
70 |
+
|
71 |
+
def preprocess(self, title: str) -> str:
|
72 |
+
"""Converts title to lowercase, removes unwanted words, replaces specific terms,
|
73 |
+
and standardizes job titles."""
|
74 |
+
if not isinstance(title, str):
|
75 |
+
return title
|
76 |
+
|
77 |
+
# Convert to lowercase
|
78 |
+
title = title.lower()
|
79 |
+
|
80 |
+
# Replace specific terms and Roman numerals
|
81 |
+
replacements = [
|
82 |
+
(r'\b(?:SR|sr|Sr\.?|SR\.?|Senior|senior)\b', 'Senior'),
|
83 |
+
(r'\b(?:JR|jr|Jr\.?|JR\.?|Junior|junior)\b', 'Junior'),
|
84 |
+
(r'\b(?:AIML|aiml|ML|ml|MachineLearning|machinelearning|machine[_\-]learning)\b', 'Machine Learning'),
|
85 |
+
(r'\b(?:GenAI|genai|Genai|generative[_\-]ai|GenerativeAI|generativeai)\b', 'Generative AI'),
|
86 |
+
(r'\b(?:NLP|nlp|natural[_\-]language[_\-]processing|natural language processing)\b', 'NLP'),
|
87 |
+
(r'\b(?:i|I)\b', '1'),
|
88 |
+
(r'\b(?:ii|II)\b', '2'),
|
89 |
+
(r'\b(?:iii|III)\b', '3'),
|
90 |
+
(r'\b(?:iv|IV)\b', '4'),
|
91 |
+
(r'\b(?:v|V)\b', '5')
|
92 |
+
]
|
93 |
+
|
94 |
+
for pattern, replacement in replacements:
|
95 |
+
title = re.sub(pattern, replacement, title, flags=re.IGNORECASE)
|
96 |
+
|
97 |
+
# Handle specific Data Scientist cases
|
98 |
+
title = re.sub(r'\b(director|dir\.?|dir)\b.*?(data\s*scientist|data\s*science)', 'Director Data Scientist', title, flags=re.IGNORECASE)
|
99 |
+
title = re.sub(r'\b(manager|mgr)\b.*?(data\s*scientist|data\s*science)', 'Manager Data Scientist', title, flags=re.IGNORECASE)
|
100 |
+
title = re.sub(r'\b(lead)\b.*?(data\s*scientist|data\s*science)', 'Lead Data Scientist', title, flags=re.IGNORECASE)
|
101 |
+
title = re.sub(r'\b(associate|associates?)\b.*?(data\s*scientist|data\s*science)', 'Associate Data Scientist', title, flags=re.IGNORECASE)
|
102 |
+
title = re.sub(r'\b(applied)\b.*?(data\s*scientist|data\s*science)', 'Applied Data Scientist', title, flags=re.IGNORECASE)
|
103 |
+
title = re.sub(r'\b(intern|internship|trainee)\b.*?(data\s*scientist|data\s*science)', 'Intern Data Scientist', title, flags=re.IGNORECASE)
|
104 |
+
|
105 |
+
# Ensure "ML" or "NLP" is retained if found in the title
|
106 |
+
if re.search(r'\bdata\s*scientist\b', title, flags=re.IGNORECASE):
|
107 |
+
if re.search(r'\b(?:ai|artificial intelligence|ml|machine learning|deep learning|dl)\b', title, flags=re.IGNORECASE):
|
108 |
+
return 'ML Data Scientist'
|
109 |
+
elif re.search(r'\b(?:nlp|natural language processing)\b', title, flags=re.IGNORECASE):
|
110 |
+
return 'NLP Data Scientist'
|
111 |
+
return title
|
112 |
+
|
113 |
+
# Clean up extra spaces
|
114 |
+
title = re.sub(r'\s+', ' ', title).strip()
|
115 |
+
|
116 |
+
return title
|
117 |
+
|
118 |
+
def is_title_empty(row):
|
119 |
+
"""
|
120 |
+
Check if the 'titles_title' is effectively empty, which includes
|
121 |
+
strings that are either empty or contain only whitespace.
|
122 |
+
"""
|
123 |
+
title = row['titles_title']
|
124 |
+
return pd.isna(title) or (isinstance(title, str) and title.strip() == '')
|
125 |
+
|
126 |
+
def main_preprocessing():
|
127 |
+
try:
|
128 |
+
# Load the dataset
|
129 |
+
df = pd.read_csv(r"Struct Data_Data Science 100K.csv", low_memory=False)
|
130 |
+
|
131 |
+
# Initialize preprocessor
|
132 |
+
preprocessor = JobTitlePreprocessor()
|
133 |
+
|
134 |
+
# Apply both the removal and standard preprocessing steps
|
135 |
+
df['clean_title'] = df.apply(preprocessor.remove_location_unwanted_words_brackets, axis=1)
|
136 |
+
df['clean_title'] = df['clean_title'].apply(preprocessor.preprocess)
|
137 |
+
|
138 |
+
# Remove rows where 'titles_title' is empty or contains only whitespace
|
139 |
+
df = df[~df.apply(is_title_empty, axis=1)]
|
140 |
+
|
141 |
+
# Drop rows where 'clean_title' is NaN
|
142 |
+
df = df.dropna(subset=['clean_title'])
|
143 |
+
|
144 |
+
# Log some information about the dataset
|
145 |
+
logger.info(f"Original dataset shape: {df.shape}")
|
146 |
+
logger.info(f"Number of non-empty titles: {df['clean_title'].notna().sum()}")
|
147 |
+
|
148 |
+
# Save the preprocessed data
|
149 |
+
output_df = df[['titles_title', 'clean_title']]
|
150 |
+
output_df.to_csv('preprocessed_job_titles.csv', index=False)
|
151 |
+
|
152 |
+
logger.info(f"Preprocessed dataset shape: {output_df.shape}")
|
153 |
+
logger.info("Job title preprocessing completed successfully.")
|
154 |
+
logger.info(f"Total rows with part of location removed from titles: {preprocessor.location_removed_count}")
|
155 |
+
logger.info(f"Total unwanted words removed: {preprocessor.unwanted_words_removed_count}")
|
156 |
+
logger.info(f"Total brackets removed: {preprocessor.brackets_removed_count}")
|
157 |
+
logger.info(f"Total states/regions removed: {preprocessor.state_region_removed_count}")
|
158 |
+
logger.info(f"Total numbers removed: {preprocessor.numbers_removed_count}")
|
159 |
+
|
160 |
+
except Exception as e:
|
161 |
+
logger.error(f"An error occurred during preprocessing: {e}")
|
162 |
+
|
163 |
+
if __name__ == "__main__":
|
164 |
+
main_preprocessing()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
scikit-learn
|
vectorizer_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c2dd076934094a674858b413185262bdf916f4157f7096af89f3064930ae692
|
3 |
+
size 105867
|