File size: 4,422 Bytes
f97b093
 
 
 
 
 
 
11772dd
f97b093
 
 
 
 
 
 
 
 
11772dd
f97b093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11772dd
 
f97b093
 
 
11772dd
f97b093
 
11772dd
f97b093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11772dd
 
f97b093
11772dd
f97b093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11772dd
 
 
f97b093
11772dd
f97b093
 
 
 
11772dd
 
 
 
 
 
 
f97b093
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import pickle
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from tensorflow.keras.models import load_model
import streamlit as st

# Load datasets
books = pd.read_csv("./dataset/books.csv")
ratings = pd.read_csv("./dataset/ratings.csv")

# Preprocess data
user_encoder = LabelEncoder()
book_encoder = LabelEncoder()

ratings["user_id"] = ratings["user_id"].astype(str)
ratings["user_id"] = user_encoder.fit_transform(ratings["user_id"])
ratings["book_id"] = book_encoder.fit_transform(ratings["book_id"])

# Load TF-IDF models
with open("tfidf_model_authors.pkl", "rb") as f:
    tfidf_model_authors = pickle.load(f)

with open("tfidf_model_titles.pkl", "rb") as f:
    tfidf_model_titles = pickle.load(f)

# Load collaborative filtering model
model_cf = load_model("recommendation_model.keras")


# Content-Based Recommendation
def content_based_recommendation(
    query, books, tfidf_model_authors, tfidf_model_titles, num_recommendations=10
):
    # Transform book author, title, and description into TF-IDF vectors
    query_author_tfidf = tfidf_model_authors.transform([query])
    query_title_tfidf = tfidf_model_titles.transform([query])

    # Compute cosine similarity for authors and titles separately
    similarity_scores_authors = cosine_similarity(
        query_author_tfidf, tfidf_model_authors.transform(books["authors"])
    )
    similarity_scores_titles = cosine_similarity(
        query_title_tfidf, tfidf_model_titles.transform(books["original_title"])
    )

    # Combine similarity scores for authors and titles
    similarity_scores_combined = (
        similarity_scores_authors + similarity_scores_titles
    ) / 2

    # Get indices of recommended books
    recommended_indices = np.argsort(similarity_scores_combined.flatten())[
        -num_recommendations:
    ][::-1]

    # Get recommended books
    recommended_books = books.iloc[recommended_indices]

    return recommended_books


# Collaborative Recommendation
def collaborative_recommendation(user_id, model_cf, ratings, num_recommendations=10):
    # Get unrated books for the user
    unrated_books = ratings[
        ~ratings["book_id"].isin(ratings[ratings["user_id"] == user_id]["book_id"])
    ]["book_id"].unique()

    # Predict ratings for unrated books
    predictions = model_cf.predict(
        [np.full_like(unrated_books, user_id), unrated_books]
    ).flatten()

    # Get top indices based on predictions
    top_indices = np.argsort(predictions)[-num_recommendations:][::-1]

    # Get recommended books
    recommended_books = books.iloc[top_indices][["original_title", "authors"]]
    return recommended_books


# Hybrid Recommendation
def hybrid_recommendation(
    user_id,
    query,
    model_cf,
    books,
    ratings,
    tfidf_model_authors,
    tfidf_model_titles,
    num_recommendations=10,
):
    content_based_rec = content_based_recommendation(
        query,
        books,
        tfidf_model_authors,
        tfidf_model_titles,
        num_recommendations=num_recommendations,
    )
    collaborative_rec = collaborative_recommendation(
        user_id, model_cf, ratings, num_recommendations=num_recommendations
    )

    # Combine recommendations from different approaches
    hybrid_rec = pd.concat([content_based_rec, collaborative_rec]).drop_duplicates(
        subset="book_id", keep="first"
    )
    return hybrid_rec


# Streamlit App
st.title("Book Recommendation System")

# Sidebar for user input
user_input = st.text_input("Enter book name or author:", "")

# Get recommendations on button click
if st.button("Get Recommendations"):
    st.write("Content-Based Recommendation:")
    content_based_rec = content_based_recommendation(
        user_input, books, tfidf_model_authors, tfidf_model_titles
    )
    st.write(content_based_rec)

    # Example user ID for collaborative recommendation
    USER_ID = 0

    st.write("Collaborative Recommendation:")
    collaborative_rec = collaborative_recommendation(USER_ID, model_cf, ratings)
    st.write(collaborative_rec)

    st.write("Hybrid Recommendation:")
    hybrid_rec = hybrid_recommendation(
        USER_ID,
        user_input,
        model_cf,
        books,
        ratings,
        tfidf_model_authors,
        tfidf_model_titles,
    )
    st.write(hybrid_rec)