Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
# Set up the device (GPU or CPU)
|
7 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
8 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
9 |
+
|
10 |
+
# Load the model and processor
|
11 |
+
model_id = "ylacombe/whisper-large-v3-turbo"
|
12 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
13 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
14 |
+
)
|
15 |
+
model.to(device)
|
16 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
17 |
+
|
18 |
+
# Create a pipeline for speech recognition
|
19 |
+
pipe = pipeline(
|
20 |
+
"automatic-speech-recognition",
|
21 |
+
model=model,
|
22 |
+
tokenizer=processor.tokenizer,
|
23 |
+
feature_extractor=processor.feature_extractor,
|
24 |
+
torch_dtype=torch_dtype,
|
25 |
+
device=device,
|
26 |
+
)
|
27 |
+
|
28 |
+
def transcribe_audio(audio):
|
29 |
+
# Preprocess the audio
|
30 |
+
audio_input = processor(audio, return_tensors="pt", sampling_rate=16000)
|
31 |
+
audio_input = audio_input.to(device)
|
32 |
+
|
33 |
+
# Run the pipeline to get the transcription
|
34 |
+
result = pipe(audio_input)
|
35 |
+
return result["text"]
|
36 |
+
|
37 |
+
# Create a Gradio interface
|
38 |
+
demo = gr.Interface(
|
39 |
+
transcribe_audio,
|
40 |
+
inputs=gr.Audio(source="upload", type="file"),
|
41 |
+
outputs="text",
|
42 |
+
title="Speech-to-Text Transcription",
|
43 |
+
description="Upload an audio file to transcribe its content.",
|
44 |
+
)
|
45 |
+
|
46 |
+
# Launch the Gradio app
|
47 |
+
demo.launch()
|