import pandas as pd import numpy as np def predict_vag_from_features(file, model, gemini_key=None): df = pd.read_csv(file) required_features = [ "rms_amplitude", "peak_frequency", "spectral_entropy", "zero_crossing_rate", "mean_frequency" ] x = df[required_features].values.astype(np.float32) preds = model.predict_proba(x)[0] idx = int(np.argmax(preds)) confidence = float(preds[idx]) labels = ["normal", "osteoarthritis", "ligament_injury"] label = labels[idx] gem_txt = None if gemini_key: from gemini import query_gemini_rest gem_txt = query_gemini_rest("VAG", label, confidence, gemini_key) return label, label, confidence, gem_txt