import argparse parser = argparse.ArgumentParser() def add_argument_group(name): arg = parser.add_argument_group(name) return arg misc_arg = add_argument_group('misc') misc_arg.add_argument('--split', type=bool, default = True) misc_arg.add_argument('--input_size', type=int, default = 256, help='multiplies of 256 by the structure of the model') misc_arg.add_argument('--use_network', type=bool, default = False) data_arg = add_argument_group('data') data_arg.add_argument('--downloading', type=bool, default = False) graph_arg = add_argument_group('graph') graph_arg.add_argument('--filter_length', type=int, default = 32) graph_arg.add_argument('--kernel_size', type=int, default = 16) graph_arg.add_argument('--drop_rate', type=float, default = 0.2) train_arg = add_argument_group('train') train_arg.add_argument('--feature', type=str, default = "MLII", help='one of MLII, V1, V2, V4, V5. Favorably MLII or V1') train_arg.add_argument('--epochs', type=int, default = 80) train_arg.add_argument('--batch', type=int, default = 256) train_arg.add_argument('--patience', type=int, default = 10) train_arg.add_argument('--min_lr', type=float, default = 0.00005) train_arg.add_argument('--checkpoint_path', type=str, default = None) train_arg.add_argument('--resume_epoch', type=int) train_arg.add_argument('--ensemble', type=bool, default = False) train_arg.add_argument('--trained_model', type=str, default = None, help='dir and filename of the trained model for usage.') predict_arg = add_argument_group('predict') predict_arg.add_argument('--num', type=int, default = None) predict_arg.add_argument('--upload', type=bool, default = False) predict_arg.add_argument('--sample_rate', type=int, default = None) predict_arg.add_argument('--cinc_download', type=bool, default = False) def get_config(): config, unparsed = parser.parse_known_args() return config