Spaces:
Sleeping
Sleeping
import argparse | |
parser = argparse.ArgumentParser() | |
def add_argument_group(name): | |
arg = parser.add_argument_group(name) | |
return arg | |
misc_arg = add_argument_group('misc') | |
misc_arg.add_argument('--split', type=bool, default = True) | |
misc_arg.add_argument('--input_size', type=int, default = 256, | |
help='multiplies of 256 by the structure of the model') | |
misc_arg.add_argument('--use_network', type=bool, default = False) | |
data_arg = add_argument_group('data') | |
data_arg.add_argument('--downloading', type=bool, default = False) | |
graph_arg = add_argument_group('graph') | |
graph_arg.add_argument('--filter_length', type=int, default = 32) | |
graph_arg.add_argument('--kernel_size', type=int, default = 16) | |
graph_arg.add_argument('--drop_rate', type=float, default = 0.2) | |
train_arg = add_argument_group('train') | |
train_arg.add_argument('--feature', type=str, default = "MLII", | |
help='one of MLII, V1, V2, V4, V5. Favorably MLII or V1') | |
train_arg.add_argument('--epochs', type=int, default = 80) | |
train_arg.add_argument('--batch', type=int, default = 256) | |
train_arg.add_argument('--patience', type=int, default = 10) | |
train_arg.add_argument('--min_lr', type=float, default = 0.00005) | |
train_arg.add_argument('--checkpoint_path', type=str, default = None) | |
train_arg.add_argument('--resume_epoch', type=int) | |
train_arg.add_argument('--ensemble', type=bool, default = False) | |
train_arg.add_argument('--trained_model', type=str, default = None, | |
help='dir and filename of the trained model for usage.') | |
predict_arg = add_argument_group('predict') | |
predict_arg.add_argument('--num', type=int, default = None) | |
predict_arg.add_argument('--upload', type=bool, default = False) | |
predict_arg.add_argument('--sample_rate', type=int, default = None) | |
predict_arg.add_argument('--cinc_download', type=bool, default = False) | |
def get_config(): | |
config, unparsed = parser.parse_known_args() | |
return config | |