Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,35 @@ import gradio as gr
|
|
2 |
from PIL import Image
|
3 |
import numpy as np
|
4 |
import torch
|
|
|
5 |
from diffusers import DiffusionPipeline # Changed: Use DiffusionPipeline instead
|
6 |
from diffusers.utils import load_image
|
7 |
from huggingface_hub import HfApi, login
|
8 |
from huggingface_hub.utils import HfHubHTTPError
|
9 |
from ultralytics import YOLO
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# βββββ Load FLUX-Kontext Pipeline βββββ
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
2 |
from PIL import Image
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
+
import os
|
6 |
from diffusers import DiffusionPipeline # Changed: Use DiffusionPipeline instead
|
7 |
from diffusers.utils import load_image
|
8 |
from huggingface_hub import HfApi, login
|
9 |
from huggingface_hub.utils import HfHubHTTPError
|
10 |
from ultralytics import YOLO
|
11 |
|
12 |
+
# HuggingFace token setup
|
13 |
+
import os
|
14 |
+
|
15 |
+
# Option 1: Set your token directly (not recommended for production)
|
16 |
+
# token = "hf_your_token_here" # Replace with your actual token
|
17 |
+
|
18 |
+
# Option 2: Use environment variable (recommended)
|
19 |
+
token = os.getenv("HF_TOKEN") # Changed to match your secret name
|
20 |
+
|
21 |
+
# Option 3: Skip login if no token (will work for public models)
|
22 |
+
if token:
|
23 |
+
try:
|
24 |
+
login(token=token)
|
25 |
+
api = HfApi(token=token)
|
26 |
+
user = api.whoami()
|
27 |
+
print("β
HuggingFace token valid. Logged in as:", user["name"])
|
28 |
+
except HfHubHTTPError as e:
|
29 |
+
print("β Invalid or expired HuggingFace token.")
|
30 |
+
print("Error:", e)
|
31 |
+
else:
|
32 |
+
print("β οΈ No HuggingFace token found. Using public access only.")
|
33 |
+
api = HfApi()
|
34 |
|
35 |
# βββββ Load FLUX-Kontext Pipeline βββββ
|
36 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|