import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from threading import Thread # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1") model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1", torch_dtype=torch.float16) # Move model to GPU if available, otherwise use CPU device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [29, 0] # Define stop token IDs for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False def predict(message, history): history_transformer_format = list(zip(history[:-1], history[1:])) + [[message, ""]] stop = StopOnTokens() # Format the messages for the model messages = "".join([f"\n:{item[0]}\n:{item[1]}" for item in history_transformer_format]) # Tokenize the input and move it to the correct device (GPU/CPU) model_inputs = tokenizer([messages], return_tensors="pt").to(device) # Create a streamer for output token generation streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) # Define generation parameters generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, top_p=0.95, top_k=1000, temperature=1.0, num_beams=1, stopping_criteria=StoppingCriteriaList([stop]) ) # Run the generation in a separate thread t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Yield generated tokens as they are produced partial_message = "" for new_token in streamer: if new_token != '<': # Ignore special tokens partial_message += new_token yield partial_message # Gradio interface to interact with the model gr.ChatInterface(predict).launch() # import gradio as gr # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # def respond( # message, # history: list[tuple[str, str]], # system_message, # max_tokens, # temperature, # top_p, # ): # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response # """ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) # if __name__ == "__main__": # demo.launch() # import gradio as gr # def fake(message, history): # if message.strip(): # # Instead of returning audio directly, return a message # return "Playing sample audio...", gr.Audio("https://github.com/gradio-app/gradio/raw/main/test/test_files/audio_sample.wav") # else: # return "Please provide the name of an artist", None # with gr.Blocks() as demo: # chatbot = gr.Chatbot(placeholder="Play music by any artist!") # textbox = gr.Textbox(placeholder="Which artist's music do you want to listen to?", scale=7) # audio_player = gr.Audio() # def chat_interface(message, history): # response, audio = fake(message, history) # return history + [(message, response)], audio # textbox.submit(chat_interface, [textbox, chatbot], [chatbot, audio_player]) # demo.launch() # import random # def random_response(message, history): # return random.choice(["Yes", "No"]) # gr.ChatInterface(random_response).launch() # import gradio as gr # def yes_man(message, history): # if message.endswith("?"): # return "Yes" # else: # return "Ask me anything!" # gr.ChatInterface( # yes_man, # chatbot=gr.Chatbot(placeholder="Ask me a yes or no question
Ask me anything"), # textbox=gr.Textbox(placeholder="Ask me a yes or no question", container=False, scale=15), # title="Yes Man", # description="Ask Yes Man any question", # theme="soft", # examples=[{"text": "Hello"}, {"text": "Am I cool?"}, {"text": "Are tomatoes vegetables?"}], # cache_examples=True, # retry_btn=None, # undo_btn="Delete Previous", # clear_btn="Clear", # ).launch() # below code is not working # import gradio as gr # def count_files(files): # num_files = len(files) # return f"You uploaded {num_files} file(s)" # with gr.Blocks() as demo: # with gr.Row(): # chatbot = gr.Chatbot() # file_input = gr.Files(label="Upload Files") # file_input.change(count_files, inputs=file_input, outputs=chatbot) # demo.launch() # new code # import os # from langchain_openai import ChatOpenAI # from langchain.schema import AIMessage, HumanMessage # import openai # import gradio as gr # os.environ["OPENAI_API_KEY"] = "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" # Replace with your key # llm = ChatOpenAI(temperature=1.0, model='gpt-3.5-turbo') # def predict(message, history): # history_langchain_format = [] # for msg in history: # if msg['role'] == "user": # history_langchain_format.append(HumanMessage(content=msg['content'])) # elif msg['role'] == "assistant": # history_langchain_format.append(AIMessage(content=msg['content'])) # history_langchain_format.append(HumanMessage(content=message)) # gpt_response = llm(history_langchain_format) # return gpt_response.content # gr.ChatInterface(predict).launch()