Spaces:
Running
on
T4
Running
on
T4
File size: 18,608 Bytes
d73d6bf 74dd08e d73d6bf 74dd08e d73d6bf 74dd08e d73d6bf 74dd08e d73d6bf 74dd08e d73d6bf 74dd08e d73d6bf 74dd08e d73d6bf 74dd08e d73d6bf 74dd08e d73d6bf 74dd08e d73d6bf 74dd08e d73d6bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "yxig5CdZuHb9"
},
"source": [
"# CountGD - Multimodal open-world object counting\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9wyM6J2HuHb-"
},
"source": [
"## Setup\n",
"\n",
"The following cells will setup the runtime environment with the following\n",
"\n",
"- Mount Google Drive\n",
"- Install dependencies for running the model\n",
"- Load the model into memory"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jn061Tl8uHb-"
},
"source": [
"### Mount Google Drive (if running on colab)\n",
"\n",
"The following bit of code will mount your Google Drive folder at `/content/drive`, allowing you to process files directly from it as well as store the results alongside it.\n",
"\n",
"Once you execute the next cell, you will be requested to share access with the notebook. Please follow the instructions on screen to do so.\n",
"If you are not running this on colab, you will still be able to use the files available on your environment."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"collapsed": true,
"id": "DkSUXqMPuHb-",
"outputId": "6b82521e-3afd-4545-b13f-8cfea0975d95"
},
"outputs": [],
"source": [
"# Check if running colab\n",
"import logging\n",
"\n",
"logging.basicConfig(\n",
" level=logging.INFO,\n",
" format='%(asctime)s %(levelname)-8s %(name)s %(message)s'\n",
")\n",
"try:\n",
" import google.colab\n",
" RUNNING_IN_COLAB = True\n",
"except:\n",
" RUNNING_IN_COLAB = False\n",
"\n",
"if RUNNING_IN_COLAB:\n",
" from google.colab import drive\n",
" drive.mount('/content/drive')\n",
"\n",
"from IPython.core.magic import register_cell_magic\n",
"from IPython import get_ipython\n",
"@register_cell_magic\n",
"def skip_if(line, cell):\n",
" if eval(line):\n",
" return\n",
" get_ipython().run_cell(cell)\n",
"\n",
"\n",
"%env RUNNING_IN_COLAB {RUNNING_IN_COLAB}\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kas5YtyluHb_"
},
"source": [
"### Install Dependencies\n",
"\n",
"The environment will be setup with the code, models and required dependencies.\n",
"\n",
"*Note for Colab users*\n",
"\n",
"To reduce the waiting time, you can use the pre-built wheel file available [here](https://drive.google.com/file/d/1Vl_6DAWfnVU7HFX5y_5TqqbkyTcjONbm/view?usp=sharing) - Visit the link and add it as a shortcut to your \"My Drive\" folder or edit the path accordingly below. (Line 28)\n",
"\n",
"Alternatively, if you are unable to use google drive, you can download the file to your machine & upload it to the colab runtime when you connect to it and update the path below to install it from there. (Line 28)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "982Yiv5tuHb_",
"outputId": "2f570d1a-c6cc-49c3-c336-1d784d33a169"
},
"outputs": [],
"source": [
"%%bash\n",
"\n",
"set -euxo pipefail\n",
"\n",
"if [ \"${RUNNING_IN_COLAB}\" == \"True\" ]; then\n",
" echo \"Downloading the repository...\"\n",
" if [ ! -d /content/countgd ]; then\n",
" git clone \"https://huggingface.co/spaces/nikigoli/countgd\" /content/countgd\n",
" fi\n",
" cd /content/countgd\n",
"\n",
" # If you are testing out WIP items, uncomment the following and change the pr ref\n",
" # git fetch origin refs/pr/10:refs/remotes/origin/pr/10\n",
" # git checkout pr/10 && git pull\n",
"else\n",
" # TODO check if cwd is the correct git repo\n",
" # If users use vscode, then we set the default start directory to root of the repo\n",
" echo \"Running in $(pwd)\"\n",
"fi\n",
"\n",
"# TODO check for gcc-11 or above\n",
"\n",
"# Install pip packages\n",
"pip install --upgrade pip setuptools wheel\n",
"pip install -r requirements.txt\n",
"\n",
"cd models/GroundingDINO/ops\n",
"if [ \"${RUNNING_IN_COLAB}\" == \"True\" ]; then\n",
" export CUDA_HOME=/usr/local/cuda/\n",
" if ! pip install \"/content/drive/MyDrive/MultiScaleDeformableAttention-1.0-cp311-cp311-linux_x86_64.whl\"\n",
" then\n",
" echo \"failed to install wheel, trying to build from source\";\n",
" python3 setup.py build\n",
" pip install .\n",
" fi\n",
"else\n",
" # We try to build the module as we dont know what environment we are running on\n",
" python3 setup.py build\n",
" pip install .\n",
"fi\n",
"python3 test.py"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "58iD_HGnvcRJ",
"outputId": "fe356a68-dced-4f6f-93cc-d83da2f84e28"
},
"outputs": [],
"source": [
"%cd {\"/content/countgd\" if RUNNING_IN_COLAB else '.'}"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gH7A8zthuHb_"
},
"source": [
"## Inference"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IspbBV0XuHb_"
},
"source": [
"### Loading the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "5nBT_HCUuHb_",
"outputId": "95ceb6c6-bee8-4921-8bff-d28937045f78"
},
"outputs": [],
"source": [
"import app\n",
"import importlib\n",
"importlib.reload(app)\n",
"from app import (\n",
" build_model_and_transforms,\n",
" get_device,\n",
" get_args_parser,\n",
" generate_heatmap,\n",
" get_xy_from_boxes,\n",
" predict,\n",
")\n",
"args = get_args_parser().parse_args([])\n",
"device = get_device()\n",
"model, transform = build_model_and_transforms(args)\n",
"model = model.to(device)\n",
"\n",
"run = lambda image, text: predict(model, transform, image, text, None, device)\n",
"get_output = lambda image, boxes: (len(boxes), get_xy_from_boxes(image, boxes), generate_heatmap(image, boxes))\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gfjraK3vuHb_"
},
"source": [
"### Input / Output Utils\n",
"\n",
"Helper functions for reading / writing to zipfiles and csv"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"id": "qg0g5B-fuHb_"
},
"outputs": [],
"source": [
"import io\n",
"import csv\n",
"from pathlib import Path\n",
"from contextlib import contextmanager\n",
"import zipfile\n",
"import filetype\n",
"from PIL import Image\n",
"logger = logging.getLogger()\n",
"\n",
"def images_from_zipfile(p: Path):\n",
" if not zipfile.is_zipfile(p):\n",
" raise ValueError(f'{p} is not a zipfile!')\n",
"\n",
" with zipfile.ZipFile(p, 'r') as zipf:\n",
" def process_entry(info: zipfile.ZipInfo):\n",
" with zipf.open(info) as f:\n",
" if not filetype.is_image(f):\n",
" logger.debug(f'Skipping file - {info.filename} as it is not an image')\n",
" return\n",
" # Try loading the file\n",
" try:\n",
" with Image.open(f) as im:\n",
" im.load()\n",
" return (info.filename, im)\n",
" except:\n",
" logger.exception(f'Error reading file {info.filename}')\n",
"\n",
" num_files = sum(1 for info in zipf.infolist() if info.is_dir() == False)\n",
" logger.info(f'Found {num_files} file(s) in the zip')\n",
" yield from (process_entry(info) for info in zipf.infolist() if info.is_dir() == False)\n",
"\n",
"@contextmanager\n",
"def zipfile_writer(p: Path):\n",
" with zipfile.ZipFile(p, 'w') as zipf:\n",
" def write_output(image, image_filename):\n",
" buf = io.BytesIO()\n",
" image.save(buf, 'PNG')\n",
" zipf.writestr(image_filename, buf.getvalue())\n",
" yield write_output\n",
"\n",
"@contextmanager\n",
"def csvfile_writer(p: Path):\n",
" with p.open('w', newline='') as csvfile:\n",
" fieldnames = ['filename', 'count']\n",
" csv_writer = csv.DictWriter(csvfile, fieldnames = fieldnames)\n",
" csv_writer.writeheader()\n",
"\n",
" yield csv_writer.writerow"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rFXRk-_uuHb_"
},
"outputs": [],
"source": [
"from tqdm import tqdm\n",
"import os\n",
"import json\n",
"def convert_xy_to_json(xy: tuple):\n",
" x, y = xy\n",
" pts = []\n",
" for _x, _y in zip(x.tolist(), y.tolist()):\n",
" _x, _y = round(_x, 3), round(_y, 3)\n",
" pts.append([_x, _y])\n",
"\n",
" # List of [x, y] points\n",
" return pts\n",
"\n",
"def process_zipfile(input_zipfile: Path, text: str):\n",
" if not input_zipfile.exists() or not input_zipfile.is_file() or not os.access(input_zipfile, os.R_OK):\n",
" logger.error(f'Cannot open / read zipfile: {input_zipfile}. Please check if it exists')\n",
" return\n",
"\n",
" if text == \"\":\n",
" logger.error('Please provide the object you would like to count')\n",
" return\n",
"\n",
" output_zipfile = input_zipfile.parent / f'{input_zipfile.stem}_countgd.zip'\n",
" output_csvfile = input_zipfile.parent / f'{input_zipfile.stem}.csv'\n",
" output_xyjson = input_zipfile.parent / f'{input_zipfile.stem}_xy.json'\n",
"\n",
" xy_map = {}\n",
"\n",
" logger.info(f'Writing outputs to {output_zipfile.name} and {output_csvfile.name} in {input_zipfile.parent} folder')\n",
" with zipfile_writer(output_zipfile) as add_to_zip, csvfile_writer(output_csvfile) as write_row:\n",
" for filename, im in tqdm(images_from_zipfile(input_zipfile)):\n",
" try:\n",
" boxes, _ = run(im, text)\n",
" count, xy, heatmap = get_output(im, boxes)\n",
" logger.info(f'Count: {count} - {filename}')\n",
" xy_map[filename] = convert_xy_to_json(xy)\n",
" write_row({'filename': filename, 'count': count})\n",
" add_to_zip(heatmap, filename)\n",
" except Exception:\n",
" logger.error(f'failed to process {filename}')\n",
"\n",
" output_xyjson.write_text(json.dumps(xy_map))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TmqsSxrsuHb_"
},
"source": [
"### Run\n",
"\n",
"Use the form on colab to set the parameters, providing the zipfile with input images and a promt text representing the object you want to count.\n",
"\n",
"Use the fileupload button to add the zip file to the `countgd` directory or change the path below accordingly.\n",
"\n",
"If you are not running on colab, change the values in the next cell\n",
"\n",
"Make sure to run the cell once you change the value."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "ZaN918EkuHb_"
},
"outputs": [],
"source": [
"# @title ## Parameters { display-mode: \"form\", run: \"auto\" }\n",
"# @markdown Set the following options to pass to the CountGD Model\n",
"\n",
"# @markdown ---\n",
"# @markdown ### Enter a file path to a zip:\n",
"zipfile_path = \"test_images.zip\" # @param {type:\"string\"}\n",
"# @markdown\n",
"# @markdown ### Which object would you like to count?\n",
"prompt = \"strawberry\" # @param {type:\"string\"}\n",
"# @markdown ---"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 66,
"referenced_widgets": [
"b14c910dd2594285bb4ad4740099e70c",
"01631442369e43138c2c5c4a9fe38ceb",
"ff84907ef88a431bab4bd3d1567cc42a"
]
},
"id": "fd-ShBCsuHb_",
"outputId": "5b36bb90-ac6e-46fe-a853-ff11d43dd9f6"
},
"outputs": [],
"source": [
"import ipywidgets as widgets\n",
"from IPython.display import display\n",
"button = widgets.Button(description=\"Run\")\n",
"\n",
"def on_button_clicked(b):\n",
" # Display the message within the output widget.\n",
" process_zipfile(Path(zipfile_path), prompt)\n",
"\n",
"button.on_click(on_button_clicked)\n",
"display(button)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [
"gfjraK3vuHb_"
],
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"01631442369e43138c2c5c4a9fe38ceb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"b14c910dd2594285bb4ad4740099e70c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ButtonModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ButtonModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ButtonView",
"button_style": "",
"description": "Run",
"disabled": false,
"icon": "",
"layout": "IPY_MODEL_01631442369e43138c2c5c4a9fe38ceb",
"style": "IPY_MODEL_ff84907ef88a431bab4bd3d1567cc42a",
"tooltip": ""
}
},
"ff84907ef88a431bab4bd3d1567cc42a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ButtonStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ButtonStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"button_color": null,
"font_weight": ""
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|