Spaces:
Configuration error
Configuration error
| from __future__ import print_function | |
| import os | |
| import sys | |
| import time | |
| import torch | |
| import math | |
| import numpy as np | |
| import cv2 | |
| def _gaussian( | |
| size=3, sigma=0.25, amplitude=1, normalize=False, width=None, | |
| height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5, | |
| mean_vert=0.5): | |
| # handle some defaults | |
| if width is None: | |
| width = size | |
| if height is None: | |
| height = size | |
| if sigma_horz is None: | |
| sigma_horz = sigma | |
| if sigma_vert is None: | |
| sigma_vert = sigma | |
| center_x = mean_horz * width + 0.5 | |
| center_y = mean_vert * height + 0.5 | |
| gauss = np.empty((height, width), dtype=np.float32) | |
| # generate kernel | |
| for i in range(height): | |
| for j in range(width): | |
| gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / ( | |
| sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0)) | |
| if normalize: | |
| gauss = gauss / np.sum(gauss) | |
| return gauss | |
| def draw_gaussian(image, point, sigma): | |
| # Check if the gaussian is inside | |
| ul = [math.floor(point[0] - 3 * sigma), math.floor(point[1] - 3 * sigma)] | |
| br = [math.floor(point[0] + 3 * sigma), math.floor(point[1] + 3 * sigma)] | |
| if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1): | |
| return image | |
| size = 6 * sigma + 1 | |
| g = _gaussian(size) | |
| g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))] | |
| g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))] | |
| img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] | |
| img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] | |
| assert (g_x[0] > 0 and g_y[1] > 0) | |
| image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1] | |
| ] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]] | |
| image[image > 1] = 1 | |
| return image | |
| def transform(point, center, scale, resolution, invert=False): | |
| """Generate and affine transformation matrix. | |
| Given a set of points, a center, a scale and a targer resolution, the | |
| function generates and affine transformation matrix. If invert is ``True`` | |
| it will produce the inverse transformation. | |
| Arguments: | |
| point {torch.tensor} -- the input 2D point | |
| center {torch.tensor or numpy.array} -- the center around which to perform the transformations | |
| scale {float} -- the scale of the face/object | |
| resolution {float} -- the output resolution | |
| Keyword Arguments: | |
| invert {bool} -- define wherever the function should produce the direct or the | |
| inverse transformation matrix (default: {False}) | |
| """ | |
| _pt = torch.ones(3) | |
| _pt[0] = point[0] | |
| _pt[1] = point[1] | |
| h = 200.0 * scale | |
| t = torch.eye(3) | |
| t[0, 0] = resolution / h | |
| t[1, 1] = resolution / h | |
| t[0, 2] = resolution * (-center[0] / h + 0.5) | |
| t[1, 2] = resolution * (-center[1] / h + 0.5) | |
| if invert: | |
| t = torch.inverse(t) | |
| new_point = (torch.matmul(t, _pt))[0:2] | |
| return new_point.int() | |
| def crop(image, center, scale, resolution=256.0): | |
| """Center crops an image or set of heatmaps | |
| Arguments: | |
| image {numpy.array} -- an rgb image | |
| center {numpy.array} -- the center of the object, usually the same as of the bounding box | |
| scale {float} -- scale of the face | |
| Keyword Arguments: | |
| resolution {float} -- the size of the output cropped image (default: {256.0}) | |
| Returns: | |
| [type] -- [description] | |
| """ # Crop around the center point | |
| """ Crops the image around the center. Input is expected to be an np.ndarray """ | |
| ul = transform([1, 1], center, scale, resolution, True) | |
| br = transform([resolution, resolution], center, scale, resolution, True) | |
| # pad = math.ceil(torch.norm((ul - br).float()) / 2.0 - (br[0] - ul[0]) / 2.0) | |
| if image.ndim > 2: | |
| newDim = np.array([br[1] - ul[1], br[0] - ul[0], | |
| image.shape[2]], dtype=np.int32) | |
| newImg = np.zeros(newDim, dtype=np.uint8) | |
| else: | |
| newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int) | |
| newImg = np.zeros(newDim, dtype=np.uint8) | |
| ht = image.shape[0] | |
| wd = image.shape[1] | |
| newX = np.array( | |
| [max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32) | |
| newY = np.array( | |
| [max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32) | |
| oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32) | |
| oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32) | |
| newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1] | |
| ] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :] | |
| newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)), | |
| interpolation=cv2.INTER_LINEAR) | |
| return newImg | |
| def get_preds_fromhm(hm, center=None, scale=None): | |
| """Obtain (x,y) coordinates given a set of N heatmaps. If the center | |
| and the scale is provided the function will return the points also in | |
| the original coordinate frame. | |
| Arguments: | |
| hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H] | |
| Keyword Arguments: | |
| center {torch.tensor} -- the center of the bounding box (default: {None}) | |
| scale {float} -- face scale (default: {None}) | |
| """ | |
| max, idx = torch.max( | |
| hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2) | |
| idx += 1 | |
| preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float() | |
| preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1) | |
| preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1) | |
| for i in range(preds.size(0)): | |
| for j in range(preds.size(1)): | |
| hm_ = hm[i, j, :] | |
| pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1 | |
| if pX > 0 and pX < 63 and pY > 0 and pY < 63: | |
| diff = torch.FloatTensor( | |
| [hm_[pY, pX + 1] - hm_[pY, pX - 1], | |
| hm_[pY + 1, pX] - hm_[pY - 1, pX]]) | |
| preds[i, j].add_(diff.sign_().mul_(.25)) | |
| preds.add_(-.5) | |
| preds_orig = torch.zeros(preds.size()) | |
| if center is not None and scale is not None: | |
| for i in range(hm.size(0)): | |
| for j in range(hm.size(1)): | |
| preds_orig[i, j] = transform( | |
| preds[i, j], center, scale, hm.size(2), True) | |
| return preds, preds_orig | |
| def get_preds_fromhm_batch(hm, centers=None, scales=None): | |
| """Obtain (x,y) coordinates given a set of N heatmaps. If the centers | |
| and the scales is provided the function will return the points also in | |
| the original coordinate frame. | |
| Arguments: | |
| hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H] | |
| Keyword Arguments: | |
| centers {torch.tensor} -- the centers of the bounding box (default: {None}) | |
| scales {float} -- face scales (default: {None}) | |
| """ | |
| max, idx = torch.max( | |
| hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2) | |
| idx += 1 | |
| preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float() | |
| preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1) | |
| preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1) | |
| for i in range(preds.size(0)): | |
| for j in range(preds.size(1)): | |
| hm_ = hm[i, j, :] | |
| pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1 | |
| if pX > 0 and pX < 63 and pY > 0 and pY < 63: | |
| diff = torch.FloatTensor( | |
| [hm_[pY, pX + 1] - hm_[pY, pX - 1], | |
| hm_[pY + 1, pX] - hm_[pY - 1, pX]]) | |
| preds[i, j].add_(diff.sign_().mul_(.25)) | |
| preds.add_(-.5) | |
| preds_orig = torch.zeros(preds.size()) | |
| if centers is not None and scales is not None: | |
| for i in range(hm.size(0)): | |
| for j in range(hm.size(1)): | |
| preds_orig[i, j] = transform( | |
| preds[i, j], centers[i], scales[i], hm.size(2), True) | |
| return preds, preds_orig | |
| def shuffle_lr(parts, pairs=None): | |
| """Shuffle the points left-right according to the axis of symmetry | |
| of the object. | |
| Arguments: | |
| parts {torch.tensor} -- a 3D or 4D object containing the | |
| heatmaps. | |
| Keyword Arguments: | |
| pairs {list of integers} -- [order of the flipped points] (default: {None}) | |
| """ | |
| if pairs is None: | |
| pairs = [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, | |
| 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 27, 28, 29, 30, 35, | |
| 34, 33, 32, 31, 45, 44, 43, 42, 47, 46, 39, 38, 37, 36, 41, | |
| 40, 54, 53, 52, 51, 50, 49, 48, 59, 58, 57, 56, 55, 64, 63, | |
| 62, 61, 60, 67, 66, 65] | |
| if parts.ndimension() == 3: | |
| parts = parts[pairs, ...] | |
| else: | |
| parts = parts[:, pairs, ...] | |
| return parts | |
| def flip(tensor, is_label=False): | |
| """Flip an image or a set of heatmaps left-right | |
| Arguments: | |
| tensor {numpy.array or torch.tensor} -- [the input image or heatmaps] | |
| Keyword Arguments: | |
| is_label {bool} -- [denote wherever the input is an image or a set of heatmaps ] (default: {False}) | |
| """ | |
| if not torch.is_tensor(tensor): | |
| tensor = torch.from_numpy(tensor) | |
| if is_label: | |
| tensor = shuffle_lr(tensor).flip(tensor.ndimension() - 1) | |
| else: | |
| tensor = tensor.flip(tensor.ndimension() - 1) | |
| return tensor | |
| # From pyzolib/paths.py (https://bitbucket.org/pyzo/pyzolib/src/tip/paths.py) | |
| def appdata_dir(appname=None, roaming=False): | |
| """ appdata_dir(appname=None, roaming=False) | |
| Get the path to the application directory, where applications are allowed | |
| to write user specific files (e.g. configurations). For non-user specific | |
| data, consider using common_appdata_dir(). | |
| If appname is given, a subdir is appended (and created if necessary). | |
| If roaming is True, will prefer a roaming directory (Windows Vista/7). | |
| """ | |
| # Define default user directory | |
| userDir = os.getenv('FACEALIGNMENT_USERDIR', None) | |
| if userDir is None: | |
| userDir = os.path.expanduser('~') | |
| if not os.path.isdir(userDir): # pragma: no cover | |
| userDir = '/var/tmp' # issue #54 | |
| # Get system app data dir | |
| path = None | |
| if sys.platform.startswith('win'): | |
| path1, path2 = os.getenv('LOCALAPPDATA'), os.getenv('APPDATA') | |
| path = (path2 or path1) if roaming else (path1 or path2) | |
| elif sys.platform.startswith('darwin'): | |
| path = os.path.join(userDir, 'Library', 'Application Support') | |
| # On Linux and as fallback | |
| if not (path and os.path.isdir(path)): | |
| path = userDir | |
| # Maybe we should store things local to the executable (in case of a | |
| # portable distro or a frozen application that wants to be portable) | |
| prefix = sys.prefix | |
| if getattr(sys, 'frozen', None): | |
| prefix = os.path.abspath(os.path.dirname(sys.executable)) | |
| for reldir in ('settings', '../settings'): | |
| localpath = os.path.abspath(os.path.join(prefix, reldir)) | |
| if os.path.isdir(localpath): # pragma: no cover | |
| try: | |
| open(os.path.join(localpath, 'test.write'), 'wb').close() | |
| os.remove(os.path.join(localpath, 'test.write')) | |
| except IOError: | |
| pass # We cannot write in this directory | |
| else: | |
| path = localpath | |
| break | |
| # Get path specific for this app | |
| if appname: | |
| if path == userDir: | |
| appname = '.' + appname.lstrip('.') # Make it a hidden directory | |
| path = os.path.join(path, appname) | |
| if not os.path.isdir(path): # pragma: no cover | |
| os.mkdir(path) | |
| # Done | |
| return path | |