Spaces:
Running
Running
| import hydra | |
| import torch | |
| import numpy as np | |
| import pandas as pd | |
| import statistics | |
| from os.path import join, dirname | |
| import matplotlib.pyplot as plt | |
| class QuadTree(object): | |
| def __init__(self, data, id="", depth=3, do_split=5000): | |
| self.id = id | |
| self.data = data | |
| coord = data[["latitude", "longitude"]].to_numpy() | |
| # if mins is None: | |
| mins = coord.min(0) | |
| # if maxs is None: | |
| maxs = coord.max(0) | |
| self.mins = np.asarray(mins) | |
| self.maxs = np.asarray(maxs) | |
| self.sizes = self.maxs - self.mins | |
| self.children = [] | |
| # sort by latitude | |
| sorted_data_lat = sorted(coord, key=lambda point: point[0]) | |
| # get the median lat | |
| median_lat = statistics.median(point[0] for point in sorted_data_lat) | |
| # Divide the cell into two half-cells based on the median lat | |
| data_left = [point for point in sorted_data_lat if point[0] <= median_lat] | |
| data_right = [point for point in sorted_data_lat if point[0] > median_lat] | |
| # Sort the data points by long in each half-cell | |
| sorted_data_left_lon = sorted(data_left, key=lambda point: point[1]) | |
| sorted_data_right_lon = sorted(data_right, key=lambda point: point[1]) | |
| # Calculate the median ylong coordinate in each half-cell | |
| median_lon_left = statistics.median(point[1] for point in sorted_data_left_lon) | |
| median_lon_right = statistics.median( | |
| point[1] for point in sorted_data_right_lon | |
| ) | |
| if (depth > 0) and (len(self.data) >= do_split): | |
| # split the data into four quadrants | |
| data_q1 = data[ | |
| (data["latitude"] < median_lat) & (data["longitude"] < median_lon_left) | |
| ] | |
| data_q2 = data[ | |
| (data["latitude"] < median_lat) & (data["longitude"] >= median_lon_left) | |
| ] | |
| data_q3 = data[ | |
| (data["latitude"] >= median_lat) | |
| & (data["longitude"] < median_lon_right) | |
| ] | |
| data_q4 = data[ | |
| (data["latitude"] >= median_lat) | |
| & (data["longitude"] >= median_lon_right) | |
| ] | |
| # recursively build a quad tree on each quadrant which has data | |
| if data_q1.shape[0] > 0: | |
| self.children.append( | |
| QuadTree( | |
| data_q1, | |
| id + "0", | |
| depth - 1, | |
| do_split=do_split, | |
| ) | |
| ) | |
| if data_q2.shape[0] > 0: | |
| self.children.append( | |
| QuadTree( | |
| data_q2, | |
| id + "1", | |
| depth - 1, | |
| do_split=do_split, | |
| ) | |
| ) | |
| if data_q3.shape[0] > 0: | |
| self.children.append( | |
| QuadTree( | |
| data_q3, | |
| id + "2", | |
| depth - 1, | |
| do_split=do_split, | |
| ) | |
| ) | |
| if data_q4.shape[0] > 0: | |
| self.children.append( | |
| QuadTree( | |
| data_q4, | |
| id + "3", | |
| depth - 1, | |
| do_split=do_split, | |
| ) | |
| ) | |
| def unwrap(self): | |
| if len(self.children) == 0: | |
| return {self.id: [self.mins, self.maxs, self.data.copy()]} | |
| else: | |
| d = dict() | |
| for child in self.children: | |
| d.update(child.unwrap()) | |
| return d | |
| def extract(qt, name_new_column): | |
| cluster = qt.unwrap() | |
| boundaries, data = {}, [] | |
| for i, (id, vs) in zip(np.arange(len(cluster)), cluster.items()): | |
| (min_lat, min_lon), (max_lat, max_lon), points = vs | |
| points[name_new_column] = int(i) | |
| data.append(points) | |
| boundaries[i] = ( | |
| float(min_lat), | |
| float(min_lon), | |
| float(max_lat), | |
| float(max_lon), | |
| points["latitude"].mean(), | |
| points["longitude"].mean(), | |
| ) | |
| data = pd.concat(data) | |
| return boundaries, data | |
| def vizu(name_new_column, df_train, boundaries, do_split): | |
| plt.hist(df_train[name_new_column], bins=len(boundaries)) | |
| plt.xlabel("Cluster ID") | |
| plt.ylabel("Number of images") | |
| plt.title("Cluster distribution") | |
| plt.yscale("log") | |
| plt.ylim(10, do_split) | |
| plt.savefig(f"{name_new_column}_distrib.png") | |
| plt.clf() | |
| plt.scatter( | |
| df_train["longitude"].to_numpy(), | |
| df_train["latitude"].to_numpy(), | |
| c=np.random.permutation(len(boundaries))[df_train[name_new_column].to_numpy()], | |
| cmap="tab20", | |
| s=0.1, | |
| alpha=0.5, | |
| ) | |
| plt.xlabel("Longitude") | |
| plt.ylabel("Latitude") | |
| plt.title("Quadtree map") | |
| plt.savefig(f"{name_new_column}_map.png") | |
| def main(cfg): | |
| data_path = join(cfg.data_dir, "osv5m") | |
| name_new_column = f"adaptive_quadtree_{cfg.depth}_{cfg.do_split}" | |
| # Create clusters from train images | |
| train_fp = join(data_path, f"train.csv") | |
| df_train = pd.read_csv(train_fp) | |
| qt = QuadTree(df_train, depth=cfg.depth, do_split=cfg.do_split) | |
| boundaries, df_train = extract(qt, name_new_column) | |
| vizu(name_new_column, df_train, boundaries, cfg.do_split) | |
| # Save clusters | |
| boundaries = pd.DataFrame.from_dict( | |
| boundaries, | |
| orient="index", | |
| columns=["min_lat", "min_lon", "max_lat", "max_lon", "mean_lat", "mean_lon"], | |
| ) | |
| boundaries.to_csv(f"{name_new_column}.csv", index_label="cluster_id") | |
| # Assign test images to clusters | |
| test_fp = join(data_path, f"test.csv") | |
| df_test = pd.read_csv(test_fp) | |
| above_lat = np.expand_dims(df_test["latitude"].to_numpy(), -1) > np.expand_dims( | |
| boundaries["min_lat"].to_numpy(), 0 | |
| ) | |
| below_lat = np.expand_dims(df_test["latitude"].to_numpy(), -1) < np.expand_dims( | |
| boundaries["max_lat"].to_numpy(), 0 | |
| ) | |
| above_lon = np.expand_dims(df_test["longitude"].to_numpy(), -1) > np.expand_dims( | |
| boundaries["min_lon"].to_numpy(), 0 | |
| ) | |
| below_lon = np.expand_dims(df_test["longitude"].to_numpy(), -1) < np.expand_dims( | |
| boundaries["max_lon"].to_numpy(), 0 | |
| ) | |
| mask = np.logical_and( | |
| np.logical_and(above_lat, below_lat), np.logical_and(above_lon, below_lon) | |
| ) | |
| df_test[name_new_column] = np.argmax(mask, axis=1) | |
| # save index_to_gps_quadtree file | |
| lat = torch.tensor(boundaries["mean_lat"]) | |
| lon = torch.tensor(boundaries["mean_lon"]) | |
| coord = torch.stack([lat / 90, lon / 180], dim=-1) | |
| torch.save( | |
| coord, | |
| join( | |
| data_path, f"index_to_gps_adaptive_quadtree_{cfg.depth}_{cfg.do_split}.pt" | |
| ), | |
| ) | |
| # Overwrite test.csv and train.csv | |
| if cfg.overwrite_csv: | |
| df_train.to_csv(train_fp, index=False) | |
| df_test.to_csv(test_fp, index=False) | |
| if __name__ == "__main__": | |
| main() | |