import gradio as gr
import spaces

import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors" # Use the correct ckpt for your step setting!

# Load model.
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")

# Ensure sampler uses "trailing" timesteps.
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")

# Load model.
@spaces.GPU
def generate(prompt, steps):
    image = pipe(prompt, num_inference_steps=steps, guidance_scale=0).images[0]
    return image

output_image = gr.Image(type="pil")
inputs=[
        gr.Textbox(label="Prompt (What you want in the image)", value="Cinematic portrait of a handsome cat with a suit and sunglasses"),
        gr.Slider(minimum=1, maximum=10, step=1, value=1, label="Number of Images(coming soon <3)")
    ]
demo = gr.Interface(fn=generate, inputs=inputs, outputs=output_image)


demo.launch()