Spaces:
Sleeping
Sleeping
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,12 +1,131 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: OASIS Demo - Social Media Simulation
|
| 3 |
+
emoji: ποΈ
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# ποΈ OASIS Demo: Open Agent Social Interaction Simulations
|
| 14 |
+
|
| 15 |
+
This is a simplified demonstration of [OASIS](https://github.com/camel-ai/oasis) - a scalable, open-source social media simulator that incorporates large language model agents to realistically mimic the behavior of up to one million users on platforms like Twitter and Reddit.
|
| 16 |
+
|
| 17 |
+
## What is OASIS?
|
| 18 |
+
|
| 19 |
+
OASIS is designed to facilitate the study of complex social phenomena such as:
|
| 20 |
+
- Information spread and viral content
|
| 21 |
+
- Group polarization and echo chambers
|
| 22 |
+
- Herd behavior and social influence
|
| 23 |
+
- Content recommendation systems
|
| 24 |
+
- Social network dynamics
|
| 25 |
+
|
| 26 |
+
## Demo Features
|
| 27 |
+
|
| 28 |
+
This simplified demo showcases:
|
| 29 |
+
- **Multi-agent interactions**: Create 2-5 AI agents with different personalities
|
| 30 |
+
- **Content generation**: Agents create posts on various topics
|
| 31 |
+
- **Social engagement**: Agents like, repost, and interact with content
|
| 32 |
+
- **Real-time simulation**: Watch social dynamics unfold step by step
|
| 33 |
+
|
| 34 |
+
## Key Capabilities of Full OASIS
|
| 35 |
+
|
| 36 |
+
### π Scalability
|
| 37 |
+
- Supports simulations of up to **1 million agents**
|
| 38 |
+
- Enables studies at scale comparable to real-world platforms
|
| 39 |
+
|
| 40 |
+
### π² Dynamic Environments
|
| 41 |
+
- Adapts to real-time changes in social networks
|
| 42 |
+
- Mirrors fluid dynamics of Twitter and Reddit
|
| 43 |
+
|
| 44 |
+
### ππΌ Diverse Action Spaces
|
| 45 |
+
- Agents can perform **23 different actions**
|
| 46 |
+
- Including following, commenting, reposting, searching, etc.
|
| 47 |
+
|
| 48 |
+
### π₯ Integrated Recommendation Systems
|
| 49 |
+
- Interest-based recommendation algorithms
|
| 50 |
+
- Hot-score-based content discovery
|
| 51 |
+
|
| 52 |
+
## Getting Started with Full OASIS
|
| 53 |
+
|
| 54 |
+
```bash
|
| 55 |
+
pip install camel-oasis
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
import asyncio
|
| 60 |
+
from camel.models import ModelFactory
|
| 61 |
+
from camel.types import ModelPlatformType, ModelType
|
| 62 |
+
import oasis
|
| 63 |
+
from oasis import ActionType, LLMAction, generate_reddit_agent_graph
|
| 64 |
+
|
| 65 |
+
# Set up your OpenAI API key
|
| 66 |
+
# export OPENAI_API_KEY=your_key_here
|
| 67 |
+
|
| 68 |
+
async def main():
|
| 69 |
+
# Create model
|
| 70 |
+
model = ModelFactory.create(
|
| 71 |
+
model_platform=ModelPlatformType.OPENAI,
|
| 72 |
+
model_type=ModelType.GPT_4O_MINI,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# Define available actions
|
| 76 |
+
available_actions = [
|
| 77 |
+
ActionType.LIKE_POST,
|
| 78 |
+
ActionType.CREATE_POST,
|
| 79 |
+
ActionType.CREATE_COMMENT,
|
| 80 |
+
ActionType.FOLLOW,
|
| 81 |
+
ActionType.DO_NOTHING,
|
| 82 |
+
]
|
| 83 |
+
|
| 84 |
+
# Generate agent graph
|
| 85 |
+
agent_graph = await generate_reddit_agent_graph(
|
| 86 |
+
profile_path="./data/reddit/user_data_36.json",
|
| 87 |
+
model=model,
|
| 88 |
+
available_actions=available_actions,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# Create environment
|
| 92 |
+
env = oasis.make(
|
| 93 |
+
agent_graph=agent_graph,
|
| 94 |
+
platform=oasis.DefaultPlatformType.REDDIT,
|
| 95 |
+
database_path="./simulation.db",
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Run simulation
|
| 99 |
+
await env.reset()
|
| 100 |
+
actions = {agent: LLMAction() for _, agent in env.agent_graph.get_agents()}
|
| 101 |
+
await env.step(actions)
|
| 102 |
+
await env.close()
|
| 103 |
+
|
| 104 |
+
if __name__ == "__main__":
|
| 105 |
+
asyncio.run(main())
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
## Research Applications
|
| 109 |
+
|
| 110 |
+
OASIS enables research in:
|
| 111 |
+
- **Information Dynamics**: How news and misinformation spread
|
| 112 |
+
- **Social Psychology**: Group behavior and influence patterns
|
| 113 |
+
- **Platform Design**: Testing recommendation algorithms and policies
|
| 114 |
+
- **Crisis Response**: Understanding information flow during emergencies
|
| 115 |
+
- **Political Science**: Studying polarization and opinion formation
|
| 116 |
+
|
| 117 |
+
## Links
|
| 118 |
+
|
| 119 |
+
- **Repository**: [github.com/camel-ai/oasis](https://github.com/camel-ai/oasis)
|
| 120 |
+
- **Documentation**: [docs.oasis.camel-ai.org](https://docs.oasis.camel-ai.org)
|
| 121 |
+
- **Paper**: [Research publication](https://arxiv.org/abs/2411.11581)
|
| 122 |
+
- **CAMEL-AI**: [camel-ai.org](https://www.camel-ai.org/)
|
| 123 |
+
|
| 124 |
+
## License
|
| 125 |
+
|
| 126 |
+
Apache License 2.0
|
| 127 |
+
|
| 128 |
+
---
|
| 129 |
+
|
| 130 |
+
**Note**: This demo shows a simplified version of OASIS capabilities. The full framework supports much more complex simulations with real LLM-powered agents, sophisticated social networks, and detailed behavioral modeling.
|
| 131 |
+
|