Update src/utils.py
Browse files- src/utils.py +125 -83
src/utils.py
CHANGED
|
@@ -1,83 +1,125 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Utility functions for visualization and analysis
|
| 3 |
-
"""
|
| 4 |
-
|
| 5 |
-
import numpy as np
|
| 6 |
-
import matplotlib.pyplot as plt
|
| 7 |
-
import librosa
|
| 8 |
-
import librosa.display
|
| 9 |
-
|
| 10 |
-
def create_waveform_plot(y, sr, title="Audio Waveform"):
|
| 11 |
-
"""
|
| 12 |
-
Create waveform visualization
|
| 13 |
-
|
| 14 |
-
Args:
|
| 15 |
-
y (np.array): Audio time series
|
| 16 |
-
sr (int): Sample rate
|
| 17 |
-
title (str): Plot title
|
| 18 |
-
|
| 19 |
-
Returns:
|
| 20 |
-
matplotlib.figure.Figure: Waveform plot
|
| 21 |
-
"""
|
| 22 |
-
fig, ax = plt.subplots(figsize=(10, 3))
|
| 23 |
-
librosa.display.waveshow(y, sr=sr, ax=ax, color='#2E86DE')
|
| 24 |
-
ax.set_title(title, fontsize=14, fontweight='bold')
|
| 25 |
-
ax.set_xlabel('Time (seconds)', fontsize=11)
|
| 26 |
-
ax.set_ylabel('Amplitude', fontsize=11)
|
| 27 |
-
ax.grid(True, alpha=0.3)
|
| 28 |
-
plt.tight_layout()
|
| 29 |
-
return fig
|
| 30 |
-
|
| 31 |
-
def create_spectrogram_plot(y, sr, title="Spectrogram"):
|
| 32 |
-
"""
|
| 33 |
-
Create spectrogram visualization
|
| 34 |
-
|
| 35 |
-
Args:
|
| 36 |
-
y (np.array): Audio time series
|
| 37 |
-
sr (int): Sample rate
|
| 38 |
-
title (str): Plot title
|
| 39 |
-
|
| 40 |
-
Returns:
|
| 41 |
-
matplotlib.figure.Figure: Spectrogram plot
|
| 42 |
-
"""
|
| 43 |
-
fig, ax = plt.subplots(figsize=(10, 4))
|
| 44 |
-
D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
|
| 45 |
-
img = librosa.display.specshow(D, sr=sr, x_axis='time', y_axis='hz',
|
| 46 |
-
ax=ax, cmap='viridis')
|
| 47 |
-
ax.set_title(title, fontsize=14, fontweight='bold')
|
| 48 |
-
ax.set_xlabel('Time (seconds)', fontsize=11)
|
| 49 |
-
ax.set_ylabel('Frequency (Hz)', fontsize=11)
|
| 50 |
-
fig.colorbar(img, ax=ax, format='%+2.0f dB')
|
| 51 |
-
plt.tight_layout()
|
| 52 |
-
return fig
|
| 53 |
-
|
| 54 |
-
def create_mel_spectrogram_plot(y, sr, title="Mel Spectrogram"):
|
| 55 |
-
"""
|
| 56 |
-
Create mel spectrogram visualization
|
| 57 |
-
|
| 58 |
-
Args:
|
| 59 |
-
y (np.array): Audio time series
|
| 60 |
-
sr (int): Sample rate
|
| 61 |
-
title (str): Plot title
|
| 62 |
-
|
| 63 |
-
Returns:
|
| 64 |
-
matplotlib.figure.Figure: Mel spectrogram plot
|
| 65 |
-
"""
|
| 66 |
-
fig, ax = plt.subplots(figsize=(10, 4))
|
| 67 |
-
S = librosa.feature.melspectrogram(y=y, sr=sr)
|
| 68 |
-
S_dB = librosa.power_to_db(S, ref=np.max)
|
| 69 |
-
img = librosa.display.specshow(S_dB, sr=sr, x_axis='time', y_axis='mel',
|
| 70 |
-
ax=ax, cmap='magma')
|
| 71 |
-
ax.set_title(title, fontsize=14, fontweight='bold')
|
| 72 |
-
ax.set_xlabel('Time (seconds)', fontsize=11)
|
| 73 |
-
ax.set_ylabel('Mel Frequency', fontsize=11)
|
| 74 |
-
fig.colorbar(img, ax=ax, format='%+2.0f dB')
|
| 75 |
-
plt.tight_layout()
|
| 76 |
-
return fig
|
| 77 |
-
|
| 78 |
-
def format_probability_text(prob_dict, top_k=None):
|
| 79 |
-
"""
|
| 80 |
-
Format probability dictionary as text with progress bars
|
| 81 |
-
|
| 82 |
-
Args:
|
| 83 |
-
prob_dict (dict): Dictionary of
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Utility functions for visualization and analysis
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import librosa
|
| 8 |
+
import librosa.display
|
| 9 |
+
|
| 10 |
+
def create_waveform_plot(y, sr, title="Audio Waveform"):
|
| 11 |
+
"""
|
| 12 |
+
Create waveform visualization
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
y (np.array): Audio time series
|
| 16 |
+
sr (int): Sample rate
|
| 17 |
+
title (str): Plot title
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
matplotlib.figure.Figure: Waveform plot
|
| 21 |
+
"""
|
| 22 |
+
fig, ax = plt.subplots(figsize=(10, 3))
|
| 23 |
+
librosa.display.waveshow(y, sr=sr, ax=ax, color='#2E86DE')
|
| 24 |
+
ax.set_title(title, fontsize=14, fontweight='bold')
|
| 25 |
+
ax.set_xlabel('Time (seconds)', fontsize=11)
|
| 26 |
+
ax.set_ylabel('Amplitude', fontsize=11)
|
| 27 |
+
ax.grid(True, alpha=0.3)
|
| 28 |
+
plt.tight_layout()
|
| 29 |
+
return fig
|
| 30 |
+
|
| 31 |
+
def create_spectrogram_plot(y, sr, title="Spectrogram"):
|
| 32 |
+
"""
|
| 33 |
+
Create spectrogram visualization
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
y (np.array): Audio time series
|
| 37 |
+
sr (int): Sample rate
|
| 38 |
+
title (str): Plot title
|
| 39 |
+
|
| 40 |
+
Returns:
|
| 41 |
+
matplotlib.figure.Figure: Spectrogram plot
|
| 42 |
+
"""
|
| 43 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
| 44 |
+
D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
|
| 45 |
+
img = librosa.display.specshow(D, sr=sr, x_axis='time', y_axis='hz',
|
| 46 |
+
ax=ax, cmap='viridis')
|
| 47 |
+
ax.set_title(title, fontsize=14, fontweight='bold')
|
| 48 |
+
ax.set_xlabel('Time (seconds)', fontsize=11)
|
| 49 |
+
ax.set_ylabel('Frequency (Hz)', fontsize=11)
|
| 50 |
+
fig.colorbar(img, ax=ax, format='%+2.0f dB')
|
| 51 |
+
plt.tight_layout()
|
| 52 |
+
return fig
|
| 53 |
+
|
| 54 |
+
def create_mel_spectrogram_plot(y, sr, title="Mel Spectrogram"):
|
| 55 |
+
"""
|
| 56 |
+
Create mel spectrogram visualization
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
y (np.array): Audio time series
|
| 60 |
+
sr (int): Sample rate
|
| 61 |
+
title (str): Plot title
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
matplotlib.figure.Figure: Mel spectrogram plot
|
| 65 |
+
"""
|
| 66 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
| 67 |
+
S = librosa.feature.melspectrogram(y=y, sr=sr)
|
| 68 |
+
S_dB = librosa.power_to_db(S, ref=np.max)
|
| 69 |
+
img = librosa.display.specshow(S_dB, sr=sr, x_axis='time', y_axis='mel',
|
| 70 |
+
ax=ax, cmap='magma')
|
| 71 |
+
ax.set_title(title, fontsize=14, fontweight='bold')
|
| 72 |
+
ax.set_xlabel('Time (seconds)', fontsize=11)
|
| 73 |
+
ax.set_ylabel('Mel Frequency', fontsize=11)
|
| 74 |
+
fig.colorbar(img, ax=ax, format='%+2.0f dB')
|
| 75 |
+
plt.tight_layout()
|
| 76 |
+
return fig
|
| 77 |
+
|
| 78 |
+
def format_probability_text(prob_dict, top_k=None):
|
| 79 |
+
"""
|
| 80 |
+
Format probability dictionary as text with progress bars
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
prob_dict (dict): Dictionary of emotion: probability
|
| 84 |
+
top_k (int): Show only top K emotions (None for all)
|
| 85 |
+
|
| 86 |
+
Returns:
|
| 87 |
+
str: Formatted text
|
| 88 |
+
"""
|
| 89 |
+
# Sort by probability
|
| 90 |
+
sorted_probs = sorted(prob_dict.items(), key=lambda x: x[1], reverse=True)
|
| 91 |
+
|
| 92 |
+
if top_k:
|
| 93 |
+
sorted_probs = sorted_probs[:top_k]
|
| 94 |
+
|
| 95 |
+
text = ""
|
| 96 |
+
for emotion, prob in sorted_probs:
|
| 97 |
+
# Create progress bar
|
| 98 |
+
bar_length = int(prob * 30)
|
| 99 |
+
bar = 'β' * bar_length + 'β' * (30 - bar_length)
|
| 100 |
+
|
| 101 |
+
text += f"**{emotion.capitalize()}**: {bar} {prob*100:.2f}%\n"
|
| 102 |
+
|
| 103 |
+
return text
|
| 104 |
+
|
| 105 |
+
def get_emotion_emoji(emotion):
|
| 106 |
+
"""
|
| 107 |
+
Get emoji for emotion
|
| 108 |
+
|
| 109 |
+
Args:
|
| 110 |
+
emotion (str): Emotion name
|
| 111 |
+
|
| 112 |
+
Returns:
|
| 113 |
+
str: Emoji character
|
| 114 |
+
"""
|
| 115 |
+
emoji_map = {
|
| 116 |
+
'angry': 'π ',
|
| 117 |
+
'calm': 'π',
|
| 118 |
+
'disgust': 'π€’',
|
| 119 |
+
'fearful': 'π¨',
|
| 120 |
+
'happy': 'π',
|
| 121 |
+
'neutral': 'π',
|
| 122 |
+
'sad': 'π’',
|
| 123 |
+
'surprised': 'π²'
|
| 124 |
+
}
|
| 125 |
+
return emoji_map.get(emotion.lower(), 'π')
|