Create data_loader.py
Browse files- src/data_loader.py +115 -0
src/data_loader.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Data loading and dataset scanning utilities
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import List, Tuple, Optional
|
| 7 |
+
import config
|
| 8 |
+
|
| 9 |
+
def extract_emotion_from_filename(filename: str) -> str:
|
| 10 |
+
"""Extract emotion from RAVDESS-style filename"""
|
| 11 |
+
try:
|
| 12 |
+
parts = filename.split('-')
|
| 13 |
+
if len(parts) >= 3:
|
| 14 |
+
emotion_code = int(parts[2])
|
| 15 |
+
return config.EMOTION_MAP.get(emotion_code, 'unknown')
|
| 16 |
+
except:
|
| 17 |
+
pass
|
| 18 |
+
|
| 19 |
+
# Fallback: Check filename for emotion keywords
|
| 20 |
+
filename_lower = filename.lower()
|
| 21 |
+
for emotion in config.EMOTION_MAP.values():
|
| 22 |
+
if emotion in filename_lower:
|
| 23 |
+
return emotion
|
| 24 |
+
|
| 25 |
+
return 'unknown'
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def extract_actor_from_filename(filename: str) -> str:
|
| 29 |
+
"""Extract actor ID from filename"""
|
| 30 |
+
try:
|
| 31 |
+
parts = filename.split('-')
|
| 32 |
+
if len(parts) >= 7:
|
| 33 |
+
actor_id = int(parts[6].split('.')[0])
|
| 34 |
+
return f'Actor_{actor_id:02d}'
|
| 35 |
+
except:
|
| 36 |
+
pass
|
| 37 |
+
return 'Unknown'
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def scan_dataset_directory(data_dir: Optional[Path] = None) -> Tuple[List[Path], Optional[str]]:
|
| 41 |
+
"""
|
| 42 |
+
Scan data directory and return list of audio files
|
| 43 |
+
|
| 44 |
+
Args:
|
| 45 |
+
data_dir: Path to dataset directory containing Actor_XX folders
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
tuple: (list of audio file paths, error message or None)
|
| 49 |
+
"""
|
| 50 |
+
if data_dir is None:
|
| 51 |
+
data_dir = config.DATA_DIR
|
| 52 |
+
|
| 53 |
+
data_path = Path(data_dir)
|
| 54 |
+
|
| 55 |
+
if not data_path.exists():
|
| 56 |
+
# Try alternative paths
|
| 57 |
+
alternative_paths = [
|
| 58 |
+
config.DATA_DIR,
|
| 59 |
+
Path('data/audio_speech_actors_01-24'),
|
| 60 |
+
Path('../data/RAVDESS/audio_speech_actors_01-24'),
|
| 61 |
+
Path('./RAVDESS/audio_speech_actors_01-24')
|
| 62 |
+
]
|
| 63 |
+
|
| 64 |
+
for alt_path in alternative_paths:
|
| 65 |
+
if alt_path.exists():
|
| 66 |
+
data_path = alt_path
|
| 67 |
+
break
|
| 68 |
+
|
| 69 |
+
if not data_path.exists():
|
| 70 |
+
return [], f"❌ Dataset directory not found: {data_dir}"
|
| 71 |
+
|
| 72 |
+
# Find all Actor directories
|
| 73 |
+
actor_dirs = sorted([
|
| 74 |
+
d for d in data_path.iterdir()
|
| 75 |
+
if d.is_dir() and d.name.startswith('Actor_')
|
| 76 |
+
])
|
| 77 |
+
|
| 78 |
+
if len(actor_dirs) == 0:
|
| 79 |
+
return [], f"❌ No Actor directories found in {data_path}"
|
| 80 |
+
|
| 81 |
+
# Collect all .wav files
|
| 82 |
+
audio_files = []
|
| 83 |
+
for actor_dir in actor_dirs:
|
| 84 |
+
wav_files = list(actor_dir.glob('*.wav'))
|
| 85 |
+
audio_files.extend(wav_files)
|
| 86 |
+
|
| 87 |
+
return audio_files, None
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def get_dataset_statistics(audio_files: List[Path]) -> dict:
|
| 91 |
+
"""
|
| 92 |
+
Get statistics about the dataset
|
| 93 |
+
|
| 94 |
+
Args:
|
| 95 |
+
audio_files: List of audio file paths
|
| 96 |
+
|
| 97 |
+
Returns:
|
| 98 |
+
dict: Statistics dictionary
|
| 99 |
+
"""
|
| 100 |
+
emotion_counts = {}
|
| 101 |
+
actor_set = set()
|
| 102 |
+
|
| 103 |
+
for audio_file in audio_files:
|
| 104 |
+
emotion = extract_emotion_from_filename(audio_file.name)
|
| 105 |
+
emotion_counts[emotion] = emotion_counts.get(emotion, 0) + 1
|
| 106 |
+
|
| 107 |
+
actor = extract_actor_from_filename(audio_file.name)
|
| 108 |
+
actor_set.add(actor)
|
| 109 |
+
|
| 110 |
+
return {
|
| 111 |
+
'total_files': len(audio_files),
|
| 112 |
+
'emotion_counts': emotion_counts,
|
| 113 |
+
'n_actors': len(actor_set),
|
| 114 |
+
'actors': sorted(list(actor_set))
|
| 115 |
+
}
|