Spaces:
Sleeping
Sleeping
File size: 20,390 Bytes
7929cac be8e2f4 7929cac be8e2f4 7929cac 8586183 083ae55 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac be8e2f4 7929cac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import logging
from typing import Tuple, Optional
import numpy as np
from PIL import Image, ImageFilter
import gradio as gr
from transformers import pipeline
try:
import cv2
from cv2 import GaussianBlur, bilateralFilter
CV2_AVAILABLE = True
except ImportError:
cv2 = None
CV2_AVAILABLE = False
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class EnhancedChromoStereoizer:
"""
Advanced depth estimation with multi-scale fusion, gradient-preserving normalization,
and edge-aware blending for maximum detail preservation.
"""
def __init__(
self,
model_name: str = "depth-anything/Depth-Anything-V2-Small-hf",
tile_size: int = 518, # Smaller tiles for more detail
overlap_ratio: float = 0.5 # Higher overlap for better blending
):
self.depth_pipe = pipeline("depth-estimation", model=model_name)
self.tile_size = tile_size
self.overlap_ratio = overlap_ratio
self.last_original: Optional[Image.Image] = None
self.last_depth_norm: Optional[np.ndarray] = None
def _gaussian_filter(self, image: np.ndarray, sigma: float = 1.0) -> np.ndarray:
"""Numpy-based Gaussian filter implementation."""
if CV2_AVAILABLE:
kernel_size = max(3, int(6 * sigma + 1))
if kernel_size % 2 == 0:
kernel_size += 1
return cv2.GaussianBlur(image.astype(np.float32), (kernel_size, kernel_size), sigma)
else:
# Fallback using PIL
if len(image.shape) == 2:
pil_img = Image.fromarray((image * 255).astype(np.uint8))
blurred = pil_img.filter(ImageFilter.GaussianBlur(radius=sigma))
return np.array(blurred, dtype=np.float32) / 255.0
else:
return image # Return original if can't process
def _sobel_edge_detection(self, image: np.ndarray) -> np.ndarray:
"""Numpy-based Sobel edge detection."""
if CV2_AVAILABLE:
return cv2.Sobel(image.astype(np.float32), cv2.CV_32F, 1, 1, ksize=3)
else:
# Simple numpy implementation
sobel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=np.float32)
sobel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=np.float32)
# Pad image
padded = np.pad(image, 1, mode='edge')
# Apply convolution
grad_x = np.zeros_like(image)
grad_y = np.zeros_like(image)
for i in range(image.shape[0]):
for j in range(image.shape[1]):
region = padded[i:i+3, j:j+3]
grad_x[i, j] = np.sum(region * sobel_x)
grad_y[i, j] = np.sum(region * sobel_y)
return np.sqrt(grad_x**2 + grad_y**2)
def _percentile_normalize(self, depth_map: np.ndarray, p_low: float = 2, p_high: float = 98) -> np.ndarray:
"""Robust normalization using percentiles to handle outliers."""
low, high = np.percentile(depth_map, [p_low, p_high])
normalized = np.clip((depth_map - low) / max(high - low, 1e-6), 0, 1)
return normalized
def _extract_high_freq_details(self, tile_depth: np.ndarray, global_depth: np.ndarray, sigma: float = 2.0) -> np.ndarray:
"""Extract high-frequency details from tile while preserving global structure."""
# Create low-frequency version of tile
tile_low = self._gaussian_filter(tile_depth, sigma=sigma)
global_low = self._gaussian_filter(global_depth, sigma=sigma)
# Extract high-frequency details
tile_details = tile_depth - tile_low
# Add details to global depth
enhanced = global_depth + tile_details * 0.5 # Adjust strength as needed
return enhanced
def _histogram_match_local(self, tile_depth: np.ndarray, global_region: np.ndarray,
preserve_details: bool = True) -> np.ndarray:
"""Advanced histogram matching that preserves local details."""
if preserve_details:
# Extract details first
tile_smooth = self._gaussian_filter(tile_depth, sigma=1.5)
details = tile_depth - tile_smooth
# Match smooth version to global
matched_smooth = self._histogram_match(tile_smooth, global_region)
# Add back details
result = matched_smooth + details * 0.7
else:
result = self._histogram_match(tile_depth, global_region)
return np.clip(result, 0, 1)
def _histogram_match(self, source: np.ndarray, template: np.ndarray) -> np.ndarray:
"""Match histogram of source to template."""
source_flat = source.flatten()
template_flat = template.flatten()
# Get sorted unique values and their indices
source_values, source_indices = np.unique(source_flat, return_inverse=True)
template_values = np.unique(template_flat)
# Interpolate template values to match source quantiles
source_quantiles = np.linspace(0, 1, len(source_values))
template_quantiles = np.linspace(0, 1, len(template_values))
interp_values = np.interp(source_quantiles, template_quantiles, template_values)
# Map source values to interpolated template values
matched_flat = interp_values[source_indices]
return matched_flat.reshape(source.shape)
def _edge_aware_blend(self, tile: np.ndarray, global_region: np.ndarray,
weight_map: np.ndarray, edge_map: np.ndarray) -> np.ndarray:
"""Edge-aware blending that preserves sharp transitions."""
# Modify weights based on edges
edge_threshold = 0.1
edge_weights = np.where(edge_map > edge_threshold, 0.8, weight_map)
# Blend with edge awareness
blended = tile * edge_weights + global_region * (1 - edge_weights)
return blended
def _create_seamless_weights(self, h: int, w: int, blend_width: int = 32) -> np.ndarray:
"""Create seamless blending weights with smooth transitions."""
weights = np.ones((h, w), dtype=np.float32)
# Create fade regions at borders
for i in range(min(blend_width, min(h, w) // 2)):
alpha = i / blend_width
# Top and bottom
if i < h:
weights[i, :] *= alpha
weights[-(i+1), :] *= alpha
# Left and right
if i < w:
weights[:, i] *= alpha
weights[:, -(i+1)] *= alpha
# Apply smoothing for even better transitions
weights = self._gaussian_filter(weights, sigma=blend_width/6)
return weights
def _guided_filter_simple(self, depth: np.ndarray, guide: np.ndarray, radius: int = 8) -> np.ndarray:
"""Simplified guided filter using bilateral filtering concept."""
if CV2_AVAILABLE:
# Use bilateral filter as approximation
depth_uint8 = (depth * 255).astype(np.uint8)
filtered = cv2.bilateralFilter(depth_uint8, radius, 50, 50)
return filtered.astype(np.float32) / 255.0
else:
# Fallback to Gaussian filter
return self._gaussian_filter(depth, sigma=radius/3)
def generate_depth_map(self, img: Image.Image, mode: str) -> Tuple[Optional[Image.Image], Optional[Image.Image]]:
"""Enhanced depth map generation with multiple processing modes."""
if img is None:
self.last_original = None
self.last_depth_norm = None
return None, None
self.last_original = img
W, H = img.size
# Convert to numpy for edge detection
img_gray = np.array(img.convert('L'), dtype=np.float32) / 255.0
# 1. Generate global depth map
try:
result_global = self.depth_pipe(img)
raw_global = np.array(result_global["depth"], dtype=np.float32)
if CV2_AVAILABLE:
raw_global = cv2.resize(raw_global, (W, H), interpolation=cv2.INTER_LINEAR)
else:
pil_global = Image.fromarray(raw_global)
pil_global = pil_global.resize((W, H), resample=Image.BILINEAR)
raw_global = np.array(pil_global, dtype=np.float32)
except Exception as e:
logger.error(f"Global depth inference failed: {e}")
return None, None
# Normalize global depth
global_normalized = self._percentile_normalize(raw_global)
if mode == "Enhanced Tiled":
final_depth = self._process_enhanced_tiled(img, img_gray, global_normalized, W, H)
elif mode == "Multi-Scale Fusion":
final_depth = self._process_multiscale_fusion(img, img_gray, global_normalized, W, H)
else:
final_depth = global_normalized
self.last_depth_norm = final_depth
depth_img = Image.fromarray((final_depth * 255).astype(np.uint8))
# Default effect
chromo = self.apply_effect(50, 50, 10, 50, 50, 50, 0, 100, 0)
return depth_img.convert('RGB'), chromo
def _process_enhanced_tiled(self, img: Image.Image, img_gray: np.ndarray,
global_depth: np.ndarray, W: int, H: int) -> np.ndarray:
"""Enhanced tiled processing with advanced blending."""
# Edge detection for guidance
edges = self._sobel_edge_detection(img_gray)
# Initialize accumulators
accum = np.zeros((H, W), dtype=np.float32)
weight_total = np.zeros((H, W), dtype=np.float32)
ts = self.tile_size
stride = int(ts * (1 - self.overlap_ratio))
# Generate tile positions with better coverage
x_positions = list(range(0, W - ts + 1, stride))
y_positions = list(range(0, H - ts + 1, stride))
# Ensure edge coverage
if len(x_positions) == 0 or x_positions[-1] + ts < W:
x_positions.append(max(0, W - ts))
if len(y_positions) == 0 or y_positions[-1] + ts < H:
y_positions.append(max(0, H - ts))
processed_tiles = 0
total_tiles = len(x_positions) * len(y_positions)
for y in y_positions:
for x in x_positions:
processed_tiles += 1
logger.info(f"Processing tile {processed_tiles}/{total_tiles} at ({x},{y})")
# Extract tile region
x_end, y_end = min(x + ts, W), min(y + ts, H)
tile_w, tile_h = x_end - x, y_end - y
if tile_w <= 0 or tile_h <= 0:
continue
# Crop image tile
tile_img = img.crop((x, y, x_end, y_end))
# Pad if necessary
if tile_w != ts or tile_h != ts:
# Calculate mean color for padding
tile_array = np.array(tile_img)
mean_color = tuple(map(int, np.mean(tile_array.reshape(-1, tile_array.shape[-1]), axis=0)))
padded_tile = Image.new('RGB', (ts, ts), color=mean_color)
padded_tile.paste(tile_img, (0, 0))
tile_img = padded_tile
# Process tile
try:
tile_result = self.depth_pipe(tile_img)
tile_raw = np.array(tile_result["depth"], dtype=np.float32)
# Extract valid region
tile_depth = tile_raw[:tile_h, :tile_w]
# Get corresponding global region
global_region = global_depth[y:y_end, x:x_end]
edge_region = edges[y:y_end, x:x_end]
# Advanced normalization with detail preservation
tile_normalized = self._histogram_match_local(
self._percentile_normalize(tile_depth),
global_region,
preserve_details=True
)
# Multi-scale fusion
tile_enhanced = self._extract_high_freq_details(
tile_normalized, global_region, sigma=1.5
)
# Create advanced weight map
weight_map = self._create_seamless_weights(
tile_h, tile_w,
blend_width=min(32, min(tile_h, tile_w)//4)
)
# Edge-aware blending
tile_final = self._edge_aware_blend(
tile_enhanced, global_region, weight_map, edge_region
)
# Accumulate
accum[y:y_end, x:x_end] += tile_final * weight_map
weight_total[y:y_end, x:x_end] += weight_map
except Exception as e:
logger.error(f"Tile processing failed at ({x},{y}): {e}")
# Use global region as fallback
fallback_weight = np.ones((tile_h, tile_w), dtype=np.float32) * 0.1
accum[y:y_end, x:x_end] += global_depth[y:y_end, x:x_end] * fallback_weight
weight_total[y:y_end, x:x_end] += fallback_weight
continue
# Final blend
final_depth = np.divide(accum, weight_total, out=global_depth.copy(), where=weight_total > 0)
# Post-processing with guided filtering
final_depth = self._guided_filter_simple(final_depth, img_gray, radius=4)
return np.clip(final_depth, 0, 1)
def _process_multiscale_fusion(self, img: Image.Image, img_gray: np.ndarray,
global_depth: np.ndarray, W: int, H: int) -> np.ndarray:
"""Multi-scale depth fusion for maximum detail."""
scales = [0.5, 0.75, 1.0, 1.25] # Different processing scales
fused_depth = global_depth.copy()
for scale in scales:
if scale == 1.0:
continue
# Resize image
new_w, new_h = int(W * scale), int(H * scale)
if new_w < 64 or new_h < 64: # Skip very small scales
continue
logger.info(f"Processing scale {scale}")
scaled_img = img.resize((new_w, new_h), Image.BILINEAR)
try:
# Process at this scale
scale_result = self.depth_pipe(scaled_img)
scale_depth = np.array(scale_result["depth"], dtype=np.float32)
# Resize back to original
if CV2_AVAILABLE:
scale_depth = cv2.resize(scale_depth, (W, H), interpolation=cv2.INTER_LINEAR)
else:
scale_pil = Image.fromarray(scale_depth)
scale_depth = np.array(scale_pil.resize((W, H), Image.BILINEAR), dtype=np.float32)
# Normalize and extract details
scale_normalized = self._percentile_normalize(scale_depth)
details = scale_normalized - self._gaussian_filter(scale_normalized, sigma=2.0)
# Add scaled details to fusion
detail_strength = 0.3 / len(scales) # Adjust strength
fused_depth += details * detail_strength
except Exception as e:
logger.error(f"Multi-scale processing failed at {scale}: {e}")
continue
return np.clip(fused_depth, 0, 1)
def apply_effect(self, threshold_perc, depth_scale, feather_perc,
red_b, blue_b, gamma_perc, black_perc, white_perc, smooth_perc) -> Optional[Image.Image]:
"""Enhanced chromostereopsis effect with better depth mapping."""
if self.last_original is None or self.last_depth_norm is None:
return None
gray = np.array(self.last_original.convert('L'), dtype=np.float32)
# Enhanced brightness/contrast adjustment
black = black_perc * 2.55
white = white_perc * 2.55
adj = np.clip((gray - black) / max(white - black, 1e-6), 0, 1)
# Improved gamma correction
gamma_v = 0.1 + (gamma_perc / 100.0) * 2.9
adj = np.clip(adj ** gamma_v, 0, 1)
# Enhanced depth processing
depth_sm = self.last_depth_norm
if smooth_perc > 0:
sigma = smooth_perc / 100.0 * 3.0
depth_sm = self._gaussian_filter(depth_sm, sigma=sigma)
# Better depth mapping with multiple thresholds
thr = threshold_perc / 100.0
steep = max(depth_scale, 1e-3) / (feather_perc / 100.0 * 10 + 1)
# Create smoother blend with better falloff
blend = 1.0 / (1.0 + np.exp(-steep * (depth_sm - thr)))
# Enhanced color mapping
r = np.clip((red_b / 50.0) * adj * blend * 255, 0, 255).astype(np.uint8)
b = np.clip((blue_b / 50.0) * adj * (1 - blend) * 255, 0, 255).astype(np.uint8)
# Create output with better color balance
h, w = r.shape
out = np.zeros((h, w, 3), dtype=np.uint8)
out[..., 0] = r # Red channel
out[..., 2] = b # Blue channel
return Image.fromarray(out, 'RGB')
def update_effect(self, *args):
return self.apply_effect(*args)
def clear(self):
self.last_original = None
self.last_depth_norm = None
return None, None
# Enhanced UI
stereo = EnhancedChromoStereoizer()
with gr.Blocks(title='Enhanced ChromoStereoizer Pro') as demo:
gr.Markdown('## Enhanced ChromoStereoizer Pro - Maximum Detail Depth Processing')
gr.Markdown('*Advanced tiled processing with multi-scale fusion and edge-aware blending*')
with gr.Row():
with gr.Column(scale=1):
inp = gr.Image(type='pil', label='Upload Image')
mode = gr.Radio([
'Standard',
'Enhanced Tiled',
'Multi-Scale Fusion'
], value='Enhanced Tiled', label='Processing Mode')
with gr.Accordion("Advanced Settings", open=False):
gr.Markdown("**Processing Parameters**")
tile_size_info = gr.Markdown("Tile Size: 384px (optimized for detail)")
overlap_info = gr.Markdown("Overlap: 75% (optimized for seamless blending)")
btn = gr.Button('Generate Depth Map', variant='primary')
with gr.Column(scale=1):
d_out = gr.Image(type='pil', interactive=False, show_download_button=True, label='Depth Map')
c_out = gr.Image(type='pil', interactive=False, show_download_button=True, label='Chromostereopsis Effect')
with gr.Accordion("Effect Controls", open=True):
sliders = [
gr.Slider(0, 100, 50, label='Depth Threshold'),
gr.Slider(0, 100, 50, label='Depth Scale'),
gr.Slider(0, 100, 10, label='Edge Feather'),
gr.Slider(0, 100, 50, label='Red Intensity'),
gr.Slider(0, 100, 50, label='Blue Intensity'),
gr.Slider(0, 100, 50, label='Gamma'),
gr.Slider(0, 100, 0, label='Black Level'),
gr.Slider(0, 100, 100, label='White Level'),
gr.Slider(0, 100, 0, label='Smooth Factor')
]
clr = gr.Button('Clear', variant='secondary')
# Event handlers
btn.click(
lambda m, i: stereo.generate_depth_map(i, m),
[mode, inp],
[d_out, c_out],
show_progress=True
)
for slider in sliders:
slider.change(stereo.update_effect, sliders, c_out)
clr.click(stereo.clear, [], [d_out, c_out])
if __name__ == '__main__':
demo.launch() |