File size: 30,086 Bytes
c96cc05 0885c85 9db0a76 0885c85 9db0a76 0885c85 9db0a76 0885c85 9db0a76 0885c85 9db0a76 0885c85 9db0a76 0885c85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 |
from __future__ import annotations
import os
import chainlit as cl
import pandas as pd
from typing import List, Dict, Any, TypedDict, Callable, Annotated, Literal, Optional, Union, Tuple, TypeVar
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams, PointStruct
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langgraph.graph import StateGraph, END
from langchain.tools import Tool
from tavily import TavilyClient
from dotenv import load_dotenv
import json
import asyncio
import time
from functools import wraps
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableConfig
from langchain_core.runnables.utils import Output
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from dataclasses import dataclass, field
from state import FounderAnalysisState
# Load environment variables
load_dotenv()
# Validate API keys
if not os.getenv("OPENAI_API_KEY"):
raise ValueError("OPENAI_API_KEY not found in environment variables. Please add it to your .env file.")
if not os.getenv("TAVILY_API_KEY"):
raise ValueError("TAVILY_API_KEY not found in environment variables. Please add it to your .env file.")
# Configuration
COLLECTION_NAME = "founders"
VECTOR_DIM = 1536 # OpenAI embedding dimension
EMBEDDING_MODEL = "text-embedding-3-small"
LLM_MODEL = "gpt-4o-mini"
MAX_RELEVANT_CHUNKS = 3
SIMILARITY_THRESHOLD = 0.75
DEFAULT_TIMEOUT = 60 # Default timeout in seconds
API_RATE_LIMIT_DELAY = 1 # Delay between API calls in seconds
StateType = TypeVar("StateType", bound=Dict[str, Any])
# Decorator for adding timeouts to async functions
def async_timeout(timeout_seconds=DEFAULT_TIMEOUT):
def decorator(func):
@wraps(func)
async def wrapper(*args, **kwargs):
try:
return await asyncio.wait_for(func(*args, **kwargs), timeout=timeout_seconds)
except asyncio.TimeoutError:
# Create a meaningful timeout message
func_name = func.__name__
await cl.Message(content=f"β±οΈ Operation timed out: {func_name} took longer than {timeout_seconds} seconds").send()
# Return appropriate error state if the function was expecting to return a state
if "state" in kwargs:
return {**kwargs["state"], "error": f"Operation timed out after {timeout_seconds} seconds"}
raise
return wrapper
return decorator
# Rate limiter for API calls
async def rate_limit():
"""Simple rate limiter to prevent API throttling"""
await asyncio.sleep(API_RATE_LIMIT_DELAY)
class VectorStore:
def __init__(self):
self.client = QdrantClient(":memory:") # In-memory Qdrant instance
self._create_collection()
def _create_collection(self):
"""Create the founders collection if it doesn't exist."""
self.client.recreate_collection(
collection_name=COLLECTION_NAME,
vectors_config=VectorParams(size=VECTOR_DIM, distance=Distance.COSINE)
)
def upsert_profiles(self, embeddings: List[List[float]], metadata: List[Dict[str, Any]]):
"""Upsert founder profiles with their embeddings and metadata."""
points = [
PointStruct(
id=idx,
vector=embedding,
payload=metadata[idx]
)
for idx, embedding in enumerate(embeddings)
]
self.client.upsert(
collection_name=COLLECTION_NAME,
points=points
)
def search_profiles(self, query_vector: List[float], limit: int = 5) -> List[Dict[str, Any]]:
"""Search for similar profiles using the query vector."""
results = self.client.search(
collection_name=COLLECTION_NAME,
query_vector=query_vector,
limit=limit
)
return [hit.payload for hit in results]
def get_profile_by_metadata(self, metadata_key: str, metadata_value: Any) -> List[Dict[str, Any]]:
"""Retrieve profiles based on metadata filtering."""
from qdrant_client.http import models as rest
filter_condition = rest.Filter(
must=[
rest.FieldCondition(
key=metadata_key,
match=rest.MatchValue(value=metadata_value)
)
]
)
results = self.client.scroll(
collection_name=COLLECTION_NAME,
scroll_filter=filter_condition
)[0]
return [point.payload for point in results]
class FounderAnalysisSystem:
def __init__(self):
self.embeddings = OpenAIEmbeddings(model=EMBEDDING_MODEL)
self.vector_store = VectorStore()
self.llm = ChatOpenAI(model=LLM_MODEL, timeout=DEFAULT_TIMEOUT)
self.tavily_client = TavilyClient()
self.workflow = self._create_workflow()
self.progress_message = None
def _create_workflow(self) -> StateGraph:
"""Create the LangGraph workflow for founder analysis."""
# Use a simple dict type for the state graph
workflow = StateGraph(dict)
# Add nodes to the graph
workflow.add_node("process_query", self.process_query)
workflow.add_node("vector_search", self.vector_search)
workflow.add_node("filter_by_metadata", self.filter_by_metadata)
workflow.add_node("web_search", self.web_search)
workflow.add_node("analyze_profiles", self.analyze_profiles)
workflow.add_node("format_response", self.format_response)
# Add conditional edges
workflow.add_conditional_edges(
"process_query",
self.query_router,
{
"search": "vector_search",
"filter": "filter_by_metadata",
"error": END
}
)
# Add standard edges
workflow.add_edge("vector_search", "web_search")
workflow.add_edge("filter_by_metadata", "web_search")
workflow.add_edge("web_search", "analyze_profiles")
workflow.add_edge("analyze_profiles", "format_response")
workflow.add_edge("format_response", END)
# Set entry point
workflow.set_entry_point("process_query")
return workflow
async def update_progress(self, message, step, total_steps):
"""Update the progress message to show the system is still working"""
progress_text = f"β³ {message} (Step {step}/{total_steps})"
if self.progress_message is None:
self.progress_message = cl.Message(content=progress_text)
await self.progress_message.send()
else:
# Fix: Use update() without content parameter, then set content property
await self.progress_message.update()
self.progress_message.content = progress_text
@async_timeout(30) # 30 second timeout for query processing
async def process_query(self, state: FounderAnalysisState) -> FounderAnalysisState:
"""Process the user query and determine the query type."""
# Initialize state if needed
if not isinstance(state, dict):
state = {}
state.update({
"query": state.get("query", ""),
"query_type": "",
"filter_key": "",
"filter_value": "",
"retrieved_profiles": [],
"web_search_results": [],
"analysis_results": [],
"final_response": {},
"error": ""
})
query = state["query"]
# Log the processing step
await self.update_progress("Processing your query...", 1, 5)
# Check if it's a filter command
if query.lower().startswith("filter:") or query.lower().startswith("filter "):
# Remove the filter prefix and trim whitespace
filter_text = query.replace("filter:", "").replace("filter ", "").strip()
# Check if there's a colon separator for key:value format
if ":" in filter_text:
parts = filter_text.split(":", 1)
filter_key, filter_value = parts
# Provide a helpful message if the filter value is empty
if not filter_value.strip():
return {
**state,
"error": f"Please provide a value to filter by. Example: filter:{filter_key}:value"
}
return {
**state,
"query_type": "filter",
"filter_key": filter_key.strip(),
"filter_value": filter_value.strip()
}
else:
# If no specific key is provided, search across all fields
filter_value = filter_text
# Provide a helpful message if the filter value is empty
if not filter_value.strip():
return {
**state,
"error": "Please provide a value to filter by. Example: filter:Location:San Francisco"
}
return {
**state,
"query_type": "filter",
"filter_key": "all_fields", # Special value to indicate searching across all fields
"filter_value": filter_value.strip()
}
else:
return {**state, "query_type": "search"}
def query_router(self, state: FounderAnalysisState) -> str:
"""Route to the appropriate node based on query type."""
if "error" in state and state["error"]:
return "error"
return state["query_type"]
@async_timeout(45) # 45 second timeout for vector search
async def vector_search(self, state: FounderAnalysisState) -> FounderAnalysisState:
"""Search for similar profiles using vector similarity."""
query = state["query"]
# Log the vector search step
await self.update_progress("Searching for relevant founder profiles...", 2, 5)
try:
# Convert query to embedding
query_embedding = self.embeddings.embed_query(query)
# Search for similar profiles
profiles = self.vector_store.search_profiles(query_embedding, limit=3)
if not profiles:
return {
**state,
"retrieved_profiles": [],
"error": "No matching profiles found."
}
return {**state, "retrieved_profiles": profiles}
except Exception as e:
return {**state, "error": f"Error during vector search: {str(e)}"}
@async_timeout(45) # 45 second timeout for metadata filtering
async def filter_by_metadata(self, state: FounderAnalysisState) -> FounderAnalysisState:
"""Filter profiles by metadata."""
filter_key = state["filter_key"]
filter_value = state["filter_value"]
# Log the filtering step
if filter_key == "all_fields":
await self.update_progress(f"Searching for '{filter_value}' across all profile fields...", 2, 5)
else:
await self.update_progress(f"Filtering profiles by {filter_key}: '{filter_value}'...", 2, 5)
try:
# Get all profiles first
from qdrant_client.http import models as rest
# Get all profiles from the collection
results = self.vector_store.client.scroll(
collection_name=COLLECTION_NAME,
limit=100 # Adjust this limit based on your expected dataset size
)[0]
all_profiles = [point.payload for point in results]
search_value = filter_value.lower()
# Perform flexible filtering in Python
filtered_profiles = []
# Special case for searching across all fields
if filter_key == "all_fields":
for profile in all_profiles:
# Search across all fields in the profile
for key, value in profile.items():
if value and search_value in str(value).lower():
filtered_profiles.append(profile)
break # Found a match, move to next profile
else:
# Regular field-specific search
for profile in all_profiles:
# Check if the key exists in the profile
if filter_key in profile:
profile_value = str(profile[filter_key]).lower()
# Check for partial match (case-insensitive)
if search_value in profile_value:
filtered_profiles.append(profile)
if not filtered_profiles:
if filter_key == "all_fields":
error_msg = f"No profiles found matching '{filter_value}' in any field"
else:
error_msg = f"No profiles found matching '{filter_value}' in {filter_key} field"
return {
**state,
"retrieved_profiles": [],
"error": error_msg
}
return {**state, "retrieved_profiles": filtered_profiles[:3]} # Limit to 3 profiles
except Exception as e:
return {**state, "error": f"Error during metadata filtering: {str(e)}"}
@async_timeout(90) # 90 second timeout for web search
async def web_search(self, state: FounderAnalysisState) -> FounderAnalysisState:
"""Gather additional information from web search."""
profiles = state["retrieved_profiles"]
if not profiles:
return {**state, "web_search_results": []}
await self.update_progress("Gathering additional information from web search...", 3, 5)
web_search_results = []
for i, profile in enumerate(profiles):
name = profile.get("Full Name", "")
position = profile.get("Current Position", "")
company = profile.get("Company", "")
# Update progress for each profile
await self.update_progress(f"Searching web for info about {name} ({i+1}/{len(profiles)})...", 3, 5)
search_query = f"{name} {position} {company}"
try:
results = self.tavily_client.search(
query=search_query,
search_depth="advanced"
).get("results", [])
web_search_results.append({
"profile_name": name,
"search_results": results
})
# Rate limit between API calls
if i < len(profiles) - 1:
await rate_limit()
except Exception as e:
await cl.Message(content=f"β οΈ Error searching for {name}: {str(e)}").send()
return {**state, "web_search_results": web_search_results}
@async_timeout(120) # 2 minute timeout for analysis
async def analyze_profiles(self, state: FounderAnalysisState) -> FounderAnalysisState:
"""Analyze profiles with additional context."""
profiles = state["retrieved_profiles"]
web_results = state["web_search_results"]
if not profiles:
return {**state, "analysis_results": []}
await self.update_progress("Analyzing profiles and generating recommendations...", 4, 5)
analysis_results = []
for i, profile in enumerate(profiles):
name = profile.get("Full Name", "")
# Find matching web results
additional_info = []
for result in web_results:
if result["profile_name"] == name:
additional_info = result["search_results"]
break
# Update progress for each profile
await self.update_progress(f"Analyzing profile for {name} ({i+1}/{len(profiles)})...", 4, 5)
# Extract social media and online presence
linkedin = profile.get("LinkedIn", "")
twitter = profile.get("Twitter", "")
website = profile.get("Website", "")
analysis_prompt = f"""
Based on the following founder profile and additional information, analyze what types of companies
this person would be best suited to found. Consider their experience, skills, background, and online presence.
Profile: {json.dumps(profile, indent=2)}
Additional Information: {json.dumps(additional_info, indent=2)}
Provide a detailed analysis including:
1. Recommended industry sectors based on their expertise and background
2. Type of company (B2B, B2C, etc.) that would align with their experience
3. Key strengths that would contribute to success as a founder
4. Potential challenges to consider based on their profile
5. How their network and online presence could benefit their venture
6. Specific opportunities or niches they might be well-positioned to address
Be specific and provide actionable insights based on the information available.
"""
try:
response = self.llm.invoke([HumanMessage(content=analysis_prompt)])
analysis_results.append({
"founder_name": name,
"analysis": response.content,
"profile": profile,
"additional_info": additional_info
})
# Rate limit between API calls
if i < len(profiles) - 1:
await rate_limit()
except Exception as e:
await cl.Message(content=f"β οΈ Error analyzing {name}: {str(e)}").send()
return {**state, "analysis_results": analysis_results}
@async_timeout(30) # 30 second timeout for formatting
async def format_response(self, state: FounderAnalysisState) -> FounderAnalysisState:
"""Format the final response for display."""
analysis_results = state["analysis_results"]
await self.update_progress("Formatting final results...", 5, 5)
# Clear the progress message
self.progress_message = None
if not analysis_results:
if "error" in state and state["error"]:
await cl.Message(content=f"β {state['error']}").send()
else:
await cl.Message(content="β No results to display.").send()
return {**state, "final_response": {"status": "error", "message": state.get("error", "No results")}}
for result in analysis_results:
founder_name = result["founder_name"]
profile = result["profile"]
analysis = result["analysis"]
# Build profile summary with basic information
profile_summary = f"""
π― Profile Summary:
- Name: {profile.get('Full Name', '')}
- Current Position: {profile.get('Current Position', '')}
- Company: {profile.get('Company', '')}
- Location: {profile.get('Location', '')}
"""
# Add LinkedIn profile with proper URL formatting
if profile.get('LinkedIn') and profile.get('LinkedIn').strip():
linkedin_url = profile.get('LinkedIn')
# Make sure the URL has the proper format
if not linkedin_url.startswith('http'):
linkedin_url = f"https://{linkedin_url}"
profile_summary += f"- LinkedIn: {linkedin_url}\n"
# Add any other social profiles or websites
if profile.get('Twitter') and profile.get('Twitter').strip():
twitter_url = profile.get('Twitter')
if not twitter_url.startswith('http'):
twitter_url = f"https://{twitter_url}"
profile_summary += f"- Twitter: {twitter_url}\n"
if profile.get('Website') and profile.get('Website').strip():
website_url = profile.get('Website')
if not website_url.startswith('http'):
website_url = f"https://{website_url}"
profile_summary += f"- Website: {website_url}\n"
# Format the analysis
analysis_text = f"""
π Analysis:
{analysis}
"""
# Create elements for structured display using Text instead of Markdown
elements = [
cl.Text(content=profile_summary),
cl.Text(content=analysis_text)
]
await cl.Message(
content=f"Analysis for {founder_name}:",
elements=elements
).send()
await cl.Message(content="β
Analysis complete!").send()
return {**state, "final_response": {"status": "success", "results": analysis_results}}
@async_timeout(120) # 2 minute timeout for loading profiles
async def load_profiles(self, file):
"""Load and embed founder profiles from uploaded CSV."""
# Read CSV file
df = pd.read_csv(file)
# Convert DataFrame rows to list of dictionaries
profiles = df.to_dict('records')
# Create more comprehensive text representations for embedding
texts = []
for p in profiles:
# Build a rich text representation including all available fields
text_parts = []
# Add core identity information
if p.get('Full Name'):
text_parts.append(f"Name: {p.get('Full Name')}")
if p.get('Current Position'):
text_parts.append(f"Position: {p.get('Current Position')}")
if p.get('Company'):
text_parts.append(f"Company: {p.get('Company')}")
if p.get('Location'):
text_parts.append(f"Location: {p.get('Location')}")
# Add contact and social media information
if p.get('LinkedIn'):
text_parts.append(f"LinkedIn: {p.get('LinkedIn')}")
if p.get('Twitter'):
text_parts.append(f"Twitter: {p.get('Twitter')}")
if p.get('Website'):
text_parts.append(f"Website: {p.get('Website')}")
if p.get('Email'):
text_parts.append(f"Email: {p.get('Email')}")
# Add detailed professional information
if p.get('About'):
text_parts.append(f"About: {p.get('About')}")
if p.get('Skills'):
text_parts.append(f"Skills: {p.get('Skills')}")
if p.get('Experience'):
text_parts.append(f"Experience: {p.get('Experience')}")
if p.get('Education'):
text_parts.append(f"Education: {p.get('Education')}")
# Add any industry or sector information
if p.get('Industry'):
text_parts.append(f"Industry: {p.get('Industry')}")
if p.get('Sector'):
text_parts.append(f"Sector: {p.get('Sector')}")
# Add any entrepreneurial information
if p.get('Previous Startups'):
text_parts.append(f"Previous Startups: {p.get('Previous Startups')}")
if p.get('Funding History'):
text_parts.append(f"Funding History: {p.get('Funding History')}")
# Add any additional fields that might be in the CSV
for key, value in p.items():
if (key not in ['Full Name', 'Current Position', 'Company', 'Location',
'LinkedIn', 'Twitter', 'Website', 'Email',
'About', 'Skills', 'Experience', 'Education',
'Industry', 'Sector', 'Previous Startups', 'Funding History']
and value and str(value).lower() != 'nan'):
text_parts.append(f"{key}: {value}")
# Join all parts with newlines for better separation
text = "\n".join(text_parts)
texts.append(text)
# Log the first few profiles to help with debugging
if len(texts) <= 3:
print(f"Profile {len(texts)} text representation:\n{text}\n")
# Generate embeddings
embeddings = self.embeddings.embed_documents(texts)
# Store in vector database
self.vector_store.upsert_profiles(embeddings, profiles)
return len(profiles)
@async_timeout(300) # 5 minute overall timeout for the entire process
async def process_message(self, query: str):
"""Process a user message through the workflow."""
# Reset progress message
self.progress_message = None
# Initialize the state as a simple dictionary
state = {
"query": query,
"query_type": "",
"filter_key": "",
"filter_value": "",
"retrieved_profiles": [],
"web_search_results": [],
"analysis_results": [],
"final_response": {},
"error": ""
}
try:
# Manually execute the workflow nodes in sequence
# First process the query
state = await self.process_query(state)
# Route based on query type
next_node = self.query_router(state)
if next_node == "error":
await cl.Message(content=f"β {state['error']}").send()
return
# Execute the appropriate search method
if next_node == "search":
state = await self.vector_search(state)
elif next_node == "filter":
state = await self.filter_by_metadata(state)
# Check for errors after search
if state.get("error"):
await cl.Message(content=f"β {state['error']}").send()
return
# Continue with the rest of the workflow
state = await self.web_search(state)
state = await self.analyze_profiles(state)
state = await self.format_response(state)
except asyncio.TimeoutError:
await cl.Message(content="β The operation timed out. Please try a simpler query or try again later.").send()
except Exception as e:
await cl.Message(content=f"β Error processing request: {str(e)}").send()
# Initialize the system
system = FounderAnalysisSystem()
@cl.on_chat_start
async def start():
"""Initialize the chat session and prompt for CSV upload."""
await cl.Message(
content="π Welcome to the Founder Analysis System! Please upload your CSV file with founder profiles."
).send()
files = await cl.AskFileMessage(
content="Please upload your CSV file",
accept=["text/csv"],
max_size_mb=10
).send()
if not files:
await cl.Message(
content="No file was uploaded. Please try again."
).send()
return
file = files[0]
# Show loading message
msg = cl.Message(content=f"β³ Processing {file.name}...")
await msg.send()
try:
# Load the profiles with timeout
num_profiles = await asyncio.wait_for(system.load_profiles(file.path), timeout=120)
await cl.Message(
content=f"β
Successfully loaded {num_profiles} founder profiles!\n\n" +
"You can now:\n\n" +
"1. **Search for founders by expertise**:\n" +
" Example: `AI experts in healthcare`\n\n" +
"2. **Filter by specific fields**:\n" +
" Example: `filter:Location:San Francisco`\n" +
" Example: `filter:Skills:Machine Learning`\n\n" +
"3. **Search across all fields**:\n" +
" Example: `filter:Stanford`\n" +
" Example: `filter blockchain`\n\n" +
"4. **Get founder recommendations**:\n" +
" Example: `recommend founders for fintech startup`"
).send()
except asyncio.TimeoutError:
await cl.Message(content="β Loading profiles timed out. The CSV file might be too large or complex.").send()
except Exception as e:
await cl.Message(content=f"β Error loading profiles: {str(e)}").send()
@cl.on_message
async def main(message: cl.Message):
"""Handle user messages and provide responses."""
await system.process_message(message.content) |