Spaces:
Runtime error
Runtime error
pengdaqian
commited on
Commit
·
a5fe30f
1
Parent(s):
c947846
fix more
Browse files- app.py +87 -66
- pipeline_openvino_stable_diffusion.py +0 -404
- requirements.txt +1 -8
app.py
CHANGED
|
@@ -4,21 +4,22 @@ import gradio as gr
|
|
| 4 |
from datasets import load_dataset
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
-
from model import get_sd_small, get_sd_tiny, get_sd_every
|
| 8 |
from trans_google import google_translator
|
|
|
|
| 9 |
|
| 10 |
from i18n import i18nTranslator
|
| 11 |
|
| 12 |
word_list_dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
|
| 13 |
word_list = word_list_dataset["train"]['Prompt']
|
| 14 |
-
|
| 15 |
-
from diffusers import EulerDiscreteScheduler, DDIMScheduler, KDPM2AncestralDiscreteScheduler, \
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
import torch
|
| 20 |
-
import base64
|
| 21 |
-
from io import BytesIO
|
| 22 |
|
| 23 |
is_gpu_busy = False
|
| 24 |
|
|
@@ -39,22 +40,30 @@ samplers = [
|
|
| 39 |
"DDIM",
|
| 40 |
"LMSDiscrete",
|
| 41 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
rand = random.Random()
|
| 44 |
translator = google_translator()
|
| 45 |
|
| 46 |
-
tiny_pipe = get_sd_tiny()
|
| 47 |
-
small_pipe = get_sd_small()
|
| 48 |
-
every_pipe = get_sd_every()
|
| 49 |
|
| 50 |
|
| 51 |
-
def get_pipe(width: int, height: int):
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
|
| 59 |
|
| 60 |
def infer(prompt: str, negative: str, width: int, height: int, sampler: str, steps: int, seed: int, scale):
|
|
@@ -64,40 +73,40 @@ def infer(prompt: str, negative: str, width: int, height: int, sampler: str, ste
|
|
| 64 |
seed = rand.randint(0, 10000)
|
| 65 |
else:
|
| 66 |
seed = int(seed)
|
| 67 |
-
|
| 68 |
-
pipeline = get_pipe(width, height)
|
| 69 |
-
|
| 70 |
images = []
|
| 71 |
-
if torch.cuda.is_available():
|
| 72 |
-
|
| 73 |
-
else:
|
| 74 |
-
|
| 75 |
-
if sampler == "EulerDiscrete":
|
| 76 |
-
|
| 77 |
-
elif sampler == "EulerAncestralDiscrete":
|
| 78 |
-
|
| 79 |
-
elif sampler == "KDPM2Discrete":
|
| 80 |
-
|
| 81 |
-
elif sampler == "KDPM2AncestralDiscrete":
|
| 82 |
-
|
| 83 |
-
elif sampler == "UniPCMultistep":
|
| 84 |
-
|
| 85 |
-
elif sampler == "DPMSolverSinglestep":
|
| 86 |
-
|
| 87 |
-
elif sampler == "DPMSolverMultistep":
|
| 88 |
-
|
| 89 |
-
elif sampler == "HeunDiscrete":
|
| 90 |
-
|
| 91 |
-
elif sampler == "DEISMultistep":
|
| 92 |
-
|
| 93 |
-
elif sampler == "PNDM":
|
| 94 |
-
|
| 95 |
-
elif sampler == "DDPM":
|
| 96 |
-
|
| 97 |
-
elif sampler == "DDIM":
|
| 98 |
-
|
| 99 |
-
elif sampler == "LMSDiscrete":
|
| 100 |
-
|
| 101 |
|
| 102 |
try:
|
| 103 |
translate_prompt = translator.translate(prompt, lang_tgt='en')
|
|
@@ -107,20 +116,32 @@ def infer(prompt: str, negative: str, width: int, height: int, sampler: str, ste
|
|
| 107 |
translate_prompt = prompt
|
| 108 |
translate_negative = negative
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
-
buffered = BytesIO()
|
| 119 |
-
image.save(buffered, format="JPEG")
|
| 120 |
-
img_str = base64.b64encode(buffered.getvalue())
|
| 121 |
-
img_base64 = bytes("data:image/jpeg;base64,", encoding='utf-8') + img_str
|
| 122 |
|
| 123 |
-
images.append(
|
| 124 |
|
| 125 |
return images
|
| 126 |
|
|
@@ -146,7 +167,7 @@ css = """
|
|
| 146 |
padding-top: 1.5rem;
|
| 147 |
}
|
| 148 |
#prompt-column {
|
| 149 |
-
min-height:
|
| 150 |
}
|
| 151 |
#gallery {
|
| 152 |
min-height: 22rem;
|
|
@@ -416,7 +437,7 @@ with block:
|
|
| 416 |
with gr.Row(elem_id="txt2img_sampler", scale=4):
|
| 417 |
seed = gr.Number(value=0, label="Seed", elem_id="txt2img_seed")
|
| 418 |
sampler = gr.Dropdown(
|
| 419 |
-
|
| 420 |
multiselect=False,
|
| 421 |
label="Sampler",
|
| 422 |
info="sampler select"
|
|
|
|
| 4 |
from datasets import load_dataset
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
+
# from model import get_sd_small, get_sd_tiny, get_sd_every
|
| 8 |
from trans_google import google_translator
|
| 9 |
+
import replicate
|
| 10 |
|
| 11 |
from i18n import i18nTranslator
|
| 12 |
|
| 13 |
word_list_dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
|
| 14 |
word_list = word_list_dataset["train"]['Prompt']
|
| 15 |
+
#
|
| 16 |
+
# from diffusers import EulerDiscreteScheduler, DDIMScheduler, KDPM2AncestralDiscreteScheduler, \
|
| 17 |
+
# UniPCMultistepScheduler, DPMSolverSinglestepScheduler, DEISMultistepScheduler, PNDMScheduler, \
|
| 18 |
+
# DPMSolverMultistepScheduler, HeunDiscreteScheduler, EulerAncestralDiscreteScheduler, DDPMScheduler, \
|
| 19 |
+
# LMSDiscreteScheduler, KDPM2DiscreteScheduler
|
| 20 |
+
# import torch
|
| 21 |
+
# import base64
|
| 22 |
+
# from io import BytesIO
|
| 23 |
|
| 24 |
is_gpu_busy = False
|
| 25 |
|
|
|
|
| 40 |
"DDIM",
|
| 41 |
"LMSDiscrete",
|
| 42 |
]
|
| 43 |
+
re_sampler = [
|
| 44 |
+
"DDIM",
|
| 45 |
+
"K_EULER",
|
| 46 |
+
"DPMSolverMultistep",
|
| 47 |
+
"K_EULER_ANCESTRAL",
|
| 48 |
+
"PNDM",
|
| 49 |
+
"KLMS"
|
| 50 |
+
]
|
| 51 |
|
| 52 |
rand = random.Random()
|
| 53 |
translator = google_translator()
|
| 54 |
|
| 55 |
+
# tiny_pipe = get_sd_tiny()
|
| 56 |
+
# small_pipe = get_sd_small()
|
| 57 |
+
# every_pipe = get_sd_every()
|
| 58 |
|
| 59 |
|
| 60 |
+
# def get_pipe(width: int, height: int):
|
| 61 |
+
# if width == 512 and height == 512:
|
| 62 |
+
# return tiny_pipe
|
| 63 |
+
# elif width == 256 and height == 256:
|
| 64 |
+
# return small_pipe
|
| 65 |
+
# else:
|
| 66 |
+
# return every_pipe
|
| 67 |
|
| 68 |
|
| 69 |
def infer(prompt: str, negative: str, width: int, height: int, sampler: str, steps: int, seed: int, scale):
|
|
|
|
| 73 |
seed = rand.randint(0, 10000)
|
| 74 |
else:
|
| 75 |
seed = int(seed)
|
| 76 |
+
#
|
| 77 |
+
# pipeline = get_pipe(width, height)
|
| 78 |
+
#
|
| 79 |
images = []
|
| 80 |
+
# if torch.cuda.is_available():
|
| 81 |
+
# generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 82 |
+
# else:
|
| 83 |
+
# generator = None
|
| 84 |
+
# if sampler == "EulerDiscrete":
|
| 85 |
+
# pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
|
| 86 |
+
# elif sampler == "EulerAncestralDiscrete":
|
| 87 |
+
# pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
|
| 88 |
+
# elif sampler == "KDPM2Discrete":
|
| 89 |
+
# pipeline.scheduler = KDPM2DiscreteScheduler.from_config(pipeline.scheduler.config)
|
| 90 |
+
# elif sampler == "KDPM2AncestralDiscrete":
|
| 91 |
+
# pipeline.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
|
| 92 |
+
# elif sampler == "UniPCMultistep":
|
| 93 |
+
# pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
|
| 94 |
+
# elif sampler == "DPMSolverSinglestep":
|
| 95 |
+
# pipeline.scheduler = DPMSolverSinglestepScheduler.from_config(pipeline.scheduler.config)
|
| 96 |
+
# elif sampler == "DPMSolverMultistep":
|
| 97 |
+
# pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
| 98 |
+
# elif sampler == "HeunDiscrete":
|
| 99 |
+
# pipeline.scheduler = HeunDiscreteScheduler.from_config(pipeline.scheduler.config)
|
| 100 |
+
# elif sampler == "DEISMultistep":
|
| 101 |
+
# pipeline.scheduler = DEISMultistepScheduler.from_config(pipeline.scheduler.config)
|
| 102 |
+
# elif sampler == "PNDM":
|
| 103 |
+
# pipeline.scheduler = PNDMScheduler.from_config(pipeline.scheduler.config)
|
| 104 |
+
# elif sampler == "DDPM":
|
| 105 |
+
# pipeline.scheduler = DDPMScheduler.from_config(pipeline.scheduler.config)
|
| 106 |
+
# elif sampler == "DDIM":
|
| 107 |
+
# pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
| 108 |
+
# elif sampler == "LMSDiscrete":
|
| 109 |
+
# pipeline.scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
|
| 110 |
|
| 111 |
try:
|
| 112 |
translate_prompt = translator.translate(prompt, lang_tgt='en')
|
|
|
|
| 116 |
translate_prompt = prompt
|
| 117 |
translate_negative = negative
|
| 118 |
|
| 119 |
+
output = replicate.run(
|
| 120 |
+
"stability-ai/stable-diffusion:db21e45d3f7023abc2a46ee38a23973f6dce16bb082a930b0c49861f96d1e5bf",
|
| 121 |
+
input={
|
| 122 |
+
"prompt": translate_prompt,
|
| 123 |
+
"negative_prompt": translate_negative,
|
| 124 |
+
"guidance_scale": scale,
|
| 125 |
+
"num_inference_steps": steps,
|
| 126 |
+
"seed": seed,
|
| 127 |
+
"scheduler": sampler,
|
| 128 |
+
}
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# image = pipeline(prompt=translate_prompt,
|
| 132 |
+
# negative_prompt=translate_negative,
|
| 133 |
+
# guidance_scale=scale,
|
| 134 |
+
# num_inference_steps=steps,
|
| 135 |
+
# generator=generator,
|
| 136 |
+
# height=height,
|
| 137 |
+
# width=width).images[0]
|
| 138 |
|
| 139 |
+
# buffered = BytesIO()
|
| 140 |
+
# image.save(buffered, format="JPEG")
|
| 141 |
+
# img_str = base64.b64encode(buffered.getvalue())
|
| 142 |
+
# img_base64 = bytes("data:image/jpeg;base64,", encoding='utf-8') + img_str
|
| 143 |
|
| 144 |
+
images.append(output[0])
|
| 145 |
|
| 146 |
return images
|
| 147 |
|
|
|
|
| 167 |
padding-top: 1.5rem;
|
| 168 |
}
|
| 169 |
#prompt-column {
|
| 170 |
+
min-height: 500px
|
| 171 |
}
|
| 172 |
#gallery {
|
| 173 |
min-height: 22rem;
|
|
|
|
| 437 |
with gr.Row(elem_id="txt2img_sampler", scale=4):
|
| 438 |
seed = gr.Number(value=0, label="Seed", elem_id="txt2img_seed")
|
| 439 |
sampler = gr.Dropdown(
|
| 440 |
+
re_sampler, value="DPMSolverMultistep",
|
| 441 |
multiselect=False,
|
| 442 |
label="Sampler",
|
| 443 |
info="sampler select"
|
pipeline_openvino_stable_diffusion.py
DELETED
|
@@ -1,404 +0,0 @@
|
|
| 1 |
-
# Copyright 2022 The OFA-Sys Team.
|
| 2 |
-
# This source code is licensed under the Apache 2.0 license
|
| 3 |
-
# found in the LICENSE file in the root directory.
|
| 4 |
-
# Copyright 2022 The HuggingFace Inc. team.
|
| 5 |
-
# All rights reserved.
|
| 6 |
-
# This source code is licensed under the Apache 2.0 license
|
| 7 |
-
# found in the LICENSE file in the root directory.
|
| 8 |
-
|
| 9 |
-
import inspect
|
| 10 |
-
from typing import Callable, List, Optional, Union
|
| 11 |
-
|
| 12 |
-
import numpy as np
|
| 13 |
-
import torch
|
| 14 |
-
import os
|
| 15 |
-
|
| 16 |
-
from transformers import CLIPFeatureExtractor, CLIPTokenizer
|
| 17 |
-
|
| 18 |
-
from diffusers.configuration_utils import FrozenDict
|
| 19 |
-
from diffusers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
| 20 |
-
from diffusers.utils import deprecate, logging
|
| 21 |
-
from diffusers import OnnxRuntimeModel
|
| 22 |
-
|
| 23 |
-
from diffusers import OnnxStableDiffusionPipeline, DiffusionPipeline
|
| 24 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
| 25 |
-
from openvino.runtime import Core
|
| 26 |
-
ORT_TO_NP_TYPE = {
|
| 27 |
-
"tensor(bool)": np.bool_,
|
| 28 |
-
"tensor(int8)": np.int8,
|
| 29 |
-
"tensor(uint8)": np.uint8,
|
| 30 |
-
"tensor(int16)": np.int16,
|
| 31 |
-
"tensor(uint16)": np.uint16,
|
| 32 |
-
"tensor(int32)": np.int32,
|
| 33 |
-
"tensor(uint32)": np.uint32,
|
| 34 |
-
"tensor(int64)": np.int64,
|
| 35 |
-
"tensor(uint64)": np.uint64,
|
| 36 |
-
"tensor(float16)": np.float16,
|
| 37 |
-
"tensor(float)": np.float32,
|
| 38 |
-
"tensor(double)": np.float64,
|
| 39 |
-
}
|
| 40 |
-
|
| 41 |
-
logger = logging.get_logger(__name__)
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
class OpenVINOStableDiffusionPipeline(DiffusionPipeline):
|
| 45 |
-
vae_encoder: OnnxRuntimeModel
|
| 46 |
-
vae_decoder: OnnxRuntimeModel
|
| 47 |
-
text_encoder: OnnxRuntimeModel
|
| 48 |
-
tokenizer: CLIPTokenizer
|
| 49 |
-
unet: OnnxRuntimeModel
|
| 50 |
-
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
|
| 51 |
-
safety_checker: OnnxRuntimeModel
|
| 52 |
-
feature_extractor: CLIPFeatureExtractor
|
| 53 |
-
|
| 54 |
-
_optional_components = ["safety_checker", "feature_extractor"]
|
| 55 |
-
|
| 56 |
-
def __init__(
|
| 57 |
-
self,
|
| 58 |
-
vae_encoder: OnnxRuntimeModel,
|
| 59 |
-
vae_decoder: OnnxRuntimeModel,
|
| 60 |
-
text_encoder: OnnxRuntimeModel,
|
| 61 |
-
tokenizer: CLIPTokenizer,
|
| 62 |
-
unet: OnnxRuntimeModel,
|
| 63 |
-
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
| 64 |
-
safety_checker: OnnxRuntimeModel,
|
| 65 |
-
feature_extractor: CLIPFeatureExtractor,
|
| 66 |
-
requires_safety_checker: bool = True,
|
| 67 |
-
):
|
| 68 |
-
super().__init__()
|
| 69 |
-
|
| 70 |
-
if hasattr(scheduler.config,
|
| 71 |
-
"steps_offset") and scheduler.config.steps_offset != 1:
|
| 72 |
-
deprecation_message = (
|
| 73 |
-
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
| 74 |
-
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
| 75 |
-
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
| 76 |
-
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
| 77 |
-
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
| 78 |
-
" file")
|
| 79 |
-
deprecate("steps_offset!=1",
|
| 80 |
-
"1.0.0",
|
| 81 |
-
deprecation_message,
|
| 82 |
-
standard_warn=False)
|
| 83 |
-
new_config = dict(scheduler.config)
|
| 84 |
-
new_config["steps_offset"] = 1
|
| 85 |
-
scheduler._internal_dict = FrozenDict(new_config)
|
| 86 |
-
|
| 87 |
-
if hasattr(scheduler.config,
|
| 88 |
-
"clip_sample") and scheduler.config.clip_sample is True:
|
| 89 |
-
deprecation_message = (
|
| 90 |
-
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
| 91 |
-
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
| 92 |
-
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
| 93 |
-
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
| 94 |
-
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
| 95 |
-
)
|
| 96 |
-
deprecate("clip_sample not set",
|
| 97 |
-
"1.0.0",
|
| 98 |
-
deprecation_message,
|
| 99 |
-
standard_warn=False)
|
| 100 |
-
new_config = dict(scheduler.config)
|
| 101 |
-
new_config["clip_sample"] = False
|
| 102 |
-
scheduler._internal_dict = FrozenDict(new_config)
|
| 103 |
-
|
| 104 |
-
if safety_checker is None and requires_safety_checker:
|
| 105 |
-
logger.warning(
|
| 106 |
-
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
| 107 |
-
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
| 108 |
-
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
| 109 |
-
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
| 110 |
-
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
| 111 |
-
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
| 112 |
-
)
|
| 113 |
-
|
| 114 |
-
if safety_checker is not None and feature_extractor is None:
|
| 115 |
-
raise ValueError(
|
| 116 |
-
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
| 117 |
-
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
| 118 |
-
)
|
| 119 |
-
|
| 120 |
-
self.register_modules(
|
| 121 |
-
vae_encoder=vae_encoder,
|
| 122 |
-
vae_decoder=vae_decoder,
|
| 123 |
-
text_encoder=text_encoder,
|
| 124 |
-
tokenizer=tokenizer,
|
| 125 |
-
unet=unet,
|
| 126 |
-
scheduler=scheduler,
|
| 127 |
-
safety_checker=safety_checker,
|
| 128 |
-
feature_extractor=feature_extractor,
|
| 129 |
-
)
|
| 130 |
-
self.convert_to_openvino()
|
| 131 |
-
self.register_to_config(
|
| 132 |
-
requires_safety_checker=requires_safety_checker)
|
| 133 |
-
|
| 134 |
-
@classmethod
|
| 135 |
-
def from_onnx_pipeline(cls, onnx_pipe: OnnxStableDiffusionPipeline):
|
| 136 |
-
r"""
|
| 137 |
-
Create OpenVINOStableDiffusionPipeline from a onnx stable pipeline.
|
| 138 |
-
Parameters:
|
| 139 |
-
onnx_pipe (OnnxStableDiffusionPipeline)
|
| 140 |
-
"""
|
| 141 |
-
return cls(onnx_pipe.vae_encoder, onnx_pipe.vae_decoder,
|
| 142 |
-
onnx_pipe.text_encoder, onnx_pipe.tokenizer, onnx_pipe.unet,
|
| 143 |
-
onnx_pipe.scheduler, onnx_pipe.safety_checker,
|
| 144 |
-
onnx_pipe.feature_extractor, True)
|
| 145 |
-
|
| 146 |
-
def convert_to_openvino(self):
|
| 147 |
-
ie = Core()
|
| 148 |
-
|
| 149 |
-
# VAE decoder
|
| 150 |
-
vae_decoder_onnx = ie.read_model(
|
| 151 |
-
model=os.path.join(self.vae_decoder.model_save_dir, "model.onnx"))
|
| 152 |
-
vae_decoder = ie.compile_model(model=vae_decoder_onnx,
|
| 153 |
-
device_name="CPU")
|
| 154 |
-
|
| 155 |
-
# Text encoder
|
| 156 |
-
text_encoder_onnx = ie.read_model(
|
| 157 |
-
model=os.path.join(self.text_encoder.model_save_dir, "model.onnx"))
|
| 158 |
-
text_encoder = ie.compile_model(model=text_encoder_onnx,
|
| 159 |
-
device_name="CPU")
|
| 160 |
-
|
| 161 |
-
# Unet
|
| 162 |
-
unet_onnx = ie.read_model(model=os.path.join(self.unet.model_save_dir, "model.onnx"))
|
| 163 |
-
unet = ie.compile_model(model=unet_onnx, device_name="CPU")
|
| 164 |
-
|
| 165 |
-
self.register_modules(vae_decoder=vae_decoder,
|
| 166 |
-
text_encoder=text_encoder,
|
| 167 |
-
unet=unet)
|
| 168 |
-
|
| 169 |
-
def _encode_prompt(self, prompt, num_images_per_prompt,
|
| 170 |
-
do_classifier_free_guidance, negative_prompt):
|
| 171 |
-
r"""
|
| 172 |
-
Encodes the prompt into text encoder hidden states.
|
| 173 |
-
Args:
|
| 174 |
-
prompt (`str` or `List[str]`):
|
| 175 |
-
prompt to be encoded
|
| 176 |
-
num_images_per_prompt (`int`):
|
| 177 |
-
number of images that should be generated per prompt
|
| 178 |
-
do_classifier_free_guidance (`bool`):
|
| 179 |
-
whether to use classifier free guidance or not
|
| 180 |
-
negative_prompt (`str` or `List[str]`):
|
| 181 |
-
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
| 182 |
-
if `guidance_scale` is less than `1`).
|
| 183 |
-
"""
|
| 184 |
-
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
| 185 |
-
|
| 186 |
-
# get prompt text embeddings
|
| 187 |
-
text_inputs = self.tokenizer(
|
| 188 |
-
prompt,
|
| 189 |
-
padding="max_length",
|
| 190 |
-
max_length=self.tokenizer.model_max_length,
|
| 191 |
-
truncation=True,
|
| 192 |
-
return_tensors="np",
|
| 193 |
-
)
|
| 194 |
-
text_input_ids = text_inputs.input_ids
|
| 195 |
-
untruncated_ids = self.tokenizer(prompt,
|
| 196 |
-
padding="max_length",
|
| 197 |
-
return_tensors="np").input_ids
|
| 198 |
-
|
| 199 |
-
if not np.array_equal(text_input_ids, untruncated_ids):
|
| 200 |
-
removed_text = self.tokenizer.batch_decode(
|
| 201 |
-
untruncated_ids[:, self.tokenizer.model_max_length - 1:-1])
|
| 202 |
-
logger.warning(
|
| 203 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 204 |
-
f" {self.tokenizer.model_max_length} tokens: {removed_text}")
|
| 205 |
-
|
| 206 |
-
prompt_embeds = self.text_encoder(
|
| 207 |
-
{"input_ids":
|
| 208 |
-
text_input_ids.astype(np.int32)})[self.text_encoder.outputs[0]]
|
| 209 |
-
prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)
|
| 210 |
-
|
| 211 |
-
# get unconditional embeddings for classifier free guidance
|
| 212 |
-
if do_classifier_free_guidance:
|
| 213 |
-
uncond_tokens: List[str]
|
| 214 |
-
if negative_prompt is None:
|
| 215 |
-
uncond_tokens = [""] * batch_size
|
| 216 |
-
elif type(prompt) is not type(negative_prompt):
|
| 217 |
-
raise TypeError(
|
| 218 |
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 219 |
-
f" {type(prompt)}.")
|
| 220 |
-
elif isinstance(negative_prompt, str):
|
| 221 |
-
uncond_tokens = [negative_prompt] * batch_size
|
| 222 |
-
elif batch_size != len(negative_prompt):
|
| 223 |
-
raise ValueError(
|
| 224 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 225 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 226 |
-
" the batch size of `prompt`.")
|
| 227 |
-
else:
|
| 228 |
-
uncond_tokens = negative_prompt
|
| 229 |
-
|
| 230 |
-
max_length = text_input_ids.shape[-1]
|
| 231 |
-
uncond_input = self.tokenizer(
|
| 232 |
-
uncond_tokens,
|
| 233 |
-
padding="max_length",
|
| 234 |
-
max_length=max_length,
|
| 235 |
-
truncation=True,
|
| 236 |
-
return_tensors="np",
|
| 237 |
-
)
|
| 238 |
-
negative_prompt_embeds = self.text_encoder({
|
| 239 |
-
"input_ids":
|
| 240 |
-
uncond_input.input_ids.astype(np.int32)
|
| 241 |
-
})[self.text_encoder.outputs[0]]
|
| 242 |
-
negative_prompt_embeds = np.repeat(negative_prompt_embeds,
|
| 243 |
-
num_images_per_prompt,
|
| 244 |
-
axis=0)
|
| 245 |
-
|
| 246 |
-
# For classifier free guidance, we need to do two forward passes.
|
| 247 |
-
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 248 |
-
# to avoid doing two forward passes
|
| 249 |
-
prompt_embeds = np.concatenate(
|
| 250 |
-
[negative_prompt_embeds, prompt_embeds])
|
| 251 |
-
|
| 252 |
-
return prompt_embeds
|
| 253 |
-
|
| 254 |
-
def __call__(
|
| 255 |
-
self,
|
| 256 |
-
prompt: Union[str, List[str]],
|
| 257 |
-
height: Optional[int] = 512,
|
| 258 |
-
width: Optional[int] = 512,
|
| 259 |
-
num_inference_steps: Optional[int] = 50,
|
| 260 |
-
guidance_scale: Optional[float] = 7.5,
|
| 261 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 262 |
-
num_images_per_prompt: Optional[int] = 1,
|
| 263 |
-
eta: Optional[float] = 0.0,
|
| 264 |
-
generator: Optional[np.random.RandomState] = None,
|
| 265 |
-
latents: Optional[np.ndarray] = None,
|
| 266 |
-
output_type: Optional[str] = "pil",
|
| 267 |
-
return_dict: bool = True,
|
| 268 |
-
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
| 269 |
-
callback_steps: Optional[int] = 1,
|
| 270 |
-
):
|
| 271 |
-
if isinstance(prompt, str):
|
| 272 |
-
batch_size = 1
|
| 273 |
-
elif isinstance(prompt, list):
|
| 274 |
-
batch_size = len(prompt)
|
| 275 |
-
else:
|
| 276 |
-
raise ValueError(
|
| 277 |
-
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
| 278 |
-
)
|
| 279 |
-
|
| 280 |
-
if height % 8 != 0 or width % 8 != 0:
|
| 281 |
-
raise ValueError(
|
| 282 |
-
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
| 283 |
-
)
|
| 284 |
-
|
| 285 |
-
if (callback_steps is None) or (callback_steps is not None and
|
| 286 |
-
(not isinstance(callback_steps, int)
|
| 287 |
-
or callback_steps <= 0)):
|
| 288 |
-
raise ValueError(
|
| 289 |
-
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 290 |
-
f" {type(callback_steps)}.")
|
| 291 |
-
|
| 292 |
-
if generator is None:
|
| 293 |
-
generator = np.random
|
| 294 |
-
|
| 295 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 296 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 297 |
-
# corresponds to doing no classifier free guidance.
|
| 298 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
| 299 |
-
|
| 300 |
-
prompt_embeds = self._encode_prompt(prompt, num_images_per_prompt,
|
| 301 |
-
do_classifier_free_guidance,
|
| 302 |
-
negative_prompt)
|
| 303 |
-
|
| 304 |
-
# get the initial random noise unless the user supplied it
|
| 305 |
-
latents_dtype = prompt_embeds.dtype
|
| 306 |
-
latents_shape = (batch_size * num_images_per_prompt, 4, height // 8,
|
| 307 |
-
width // 8)
|
| 308 |
-
if latents is None:
|
| 309 |
-
latents = generator.randn(*latents_shape).astype(latents_dtype)
|
| 310 |
-
elif latents.shape != latents_shape:
|
| 311 |
-
raise ValueError(
|
| 312 |
-
f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}"
|
| 313 |
-
)
|
| 314 |
-
|
| 315 |
-
# set timesteps
|
| 316 |
-
self.scheduler.set_timesteps(num_inference_steps)
|
| 317 |
-
|
| 318 |
-
latents = latents * np.float64(self.scheduler.init_noise_sigma)
|
| 319 |
-
|
| 320 |
-
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 321 |
-
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 322 |
-
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 323 |
-
# and should be between [0, 1]
|
| 324 |
-
accepts_eta = "eta" in set(
|
| 325 |
-
inspect.signature(self.scheduler.step).parameters.keys())
|
| 326 |
-
extra_step_kwargs = {}
|
| 327 |
-
if accepts_eta:
|
| 328 |
-
extra_step_kwargs["eta"] = eta
|
| 329 |
-
|
| 330 |
-
# timestep_dtype = next(
|
| 331 |
-
# (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)"
|
| 332 |
-
# )
|
| 333 |
-
timestep_dtype = 'tensor(int64)'
|
| 334 |
-
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
|
| 335 |
-
|
| 336 |
-
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
|
| 337 |
-
# expand the latents if we are doing classifier free guidance
|
| 338 |
-
latent_model_input = np.concatenate(
|
| 339 |
-
[latents] * 2) if do_classifier_free_guidance else latents
|
| 340 |
-
latent_model_input = self.scheduler.scale_model_input(
|
| 341 |
-
torch.from_numpy(latent_model_input), t)
|
| 342 |
-
latent_model_input = latent_model_input.cpu().numpy()
|
| 343 |
-
|
| 344 |
-
# predict the noise residual
|
| 345 |
-
timestep = np.array([t], dtype=timestep_dtype)
|
| 346 |
-
unet_input = {
|
| 347 |
-
"sample": latent_model_input,
|
| 348 |
-
"timestep": timestep,
|
| 349 |
-
"encoder_hidden_states": prompt_embeds
|
| 350 |
-
}
|
| 351 |
-
noise_pred = self.unet(unet_input)[self.unet.outputs[0]]
|
| 352 |
-
# noise_pred = noise_pred[0]
|
| 353 |
-
|
| 354 |
-
# perform guidance
|
| 355 |
-
if do_classifier_free_guidance:
|
| 356 |
-
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
|
| 357 |
-
noise_pred = noise_pred_uncond + guidance_scale * (
|
| 358 |
-
noise_pred_text - noise_pred_uncond)
|
| 359 |
-
|
| 360 |
-
# compute the previous noisy sample x_t -> x_t-1
|
| 361 |
-
scheduler_output = self.scheduler.step(
|
| 362 |
-
torch.from_numpy(noise_pred), t, torch.from_numpy(latents),
|
| 363 |
-
**extra_step_kwargs)
|
| 364 |
-
latents = scheduler_output.prev_sample.numpy()
|
| 365 |
-
|
| 366 |
-
# call the callback, if provided
|
| 367 |
-
if callback is not None and i % callback_steps == 0:
|
| 368 |
-
callback(i, t, latents)
|
| 369 |
-
|
| 370 |
-
latents = 1 / 0.18215 * latents
|
| 371 |
-
image = self.vae_decoder({"latent_sample":
|
| 372 |
-
latents})[self.vae_decoder.outputs[0]]
|
| 373 |
-
|
| 374 |
-
image = np.clip(image / 2 + 0.5, 0, 1)
|
| 375 |
-
image = image.transpose((0, 2, 3, 1))
|
| 376 |
-
|
| 377 |
-
if self.safety_checker is not None:
|
| 378 |
-
safety_checker_input = self.feature_extractor(
|
| 379 |
-
self.numpy_to_pil(image),
|
| 380 |
-
return_tensors="np").pixel_values.astype(image.dtype)
|
| 381 |
-
|
| 382 |
-
image, has_nsfw_concepts = self.safety_checker(
|
| 383 |
-
clip_input=safety_checker_input, images=image)
|
| 384 |
-
|
| 385 |
-
# There will throw an error if use safety_checker batchsize>1
|
| 386 |
-
images, has_nsfw_concept = [], []
|
| 387 |
-
for i in range(image.shape[0]):
|
| 388 |
-
image_i, has_nsfw_concept_i = self.safety_checker(
|
| 389 |
-
clip_input=safety_checker_input[i:i + 1],
|
| 390 |
-
images=image[i:i + 1])
|
| 391 |
-
images.append(image_i)
|
| 392 |
-
has_nsfw_concept.append(has_nsfw_concept_i[0])
|
| 393 |
-
image = np.concatenate(images)
|
| 394 |
-
else:
|
| 395 |
-
has_nsfw_concept = None
|
| 396 |
-
|
| 397 |
-
if output_type == "pil":
|
| 398 |
-
image = self.numpy_to_pil(image)
|
| 399 |
-
|
| 400 |
-
if not return_dict:
|
| 401 |
-
return (image, has_nsfw_concept)
|
| 402 |
-
|
| 403 |
-
return StableDiffusionPipelineOutput(
|
| 404 |
-
images=image, nsfw_content_detected=has_nsfw_concept)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,11 +1,4 @@
|
|
| 1 |
python-dotenv
|
| 2 |
-
|
| 3 |
-
transformers<5
|
| 4 |
-
accelerate
|
| 5 |
-
scipy
|
| 6 |
-
safetensors
|
| 7 |
-
onnx
|
| 8 |
-
openvino
|
| 9 |
-
onnxruntime-openvino
|
| 10 |
ftfy
|
| 11 |
py-cpuinfo
|
|
|
|
| 1 |
python-dotenv
|
| 2 |
+
replicate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
ftfy
|
| 4 |
py-cpuinfo
|