Spaces:
Runtime error
Runtime error
pengdaqian
commited on
Commit
·
91920f4
1
Parent(s):
5ada03b
fix more
Browse files- app.py +4 -13
- model.py +41 -0
- model_test.py +2 -3
- pipeline_openvino_stable_diffusion.py +405 -0
- requirements.txt +5 -1
app.py
CHANGED
|
@@ -3,6 +3,8 @@ import random
|
|
| 3 |
import gradio as gr
|
| 4 |
from datasets import load_dataset
|
| 5 |
from PIL import Image
|
|
|
|
|
|
|
| 6 |
from trans_google import google_translator
|
| 7 |
|
| 8 |
from i18n import i18nTranslator
|
|
@@ -18,19 +20,6 @@ import torch
|
|
| 18 |
import base64
|
| 19 |
from io import BytesIO
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
model_id = "stabilityai/stable-diffusion-2-1-base"
|
| 23 |
-
|
| 24 |
-
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
| 25 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
| 26 |
-
model_id,
|
| 27 |
-
scheduler=scheduler,
|
| 28 |
-
# safety_checker=None,
|
| 29 |
-
revision="fp16",
|
| 30 |
-
torch_dtype=torch.float16)
|
| 31 |
-
|
| 32 |
-
if torch.cuda.is_available():
|
| 33 |
-
pipe = pipe.to('cuda')
|
| 34 |
is_gpu_busy = False
|
| 35 |
|
| 36 |
# translator = i18nTranslator()
|
|
@@ -54,6 +43,8 @@ samplers = [
|
|
| 54 |
rand = random.Random()
|
| 55 |
translator = google_translator()
|
| 56 |
|
|
|
|
|
|
|
| 57 |
|
| 58 |
def infer(prompt: str, negative: str, width: int, height: int, sampler: str, steps: int, seed: int, scale):
|
| 59 |
global is_gpu_busy
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
from datasets import load_dataset
|
| 5 |
from PIL import Image
|
| 6 |
+
|
| 7 |
+
from model import get_sd_small
|
| 8 |
from trans_google import google_translator
|
| 9 |
|
| 10 |
from i18n import i18nTranslator
|
|
|
|
| 20 |
import base64
|
| 21 |
from io import BytesIO
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
is_gpu_busy = False
|
| 24 |
|
| 25 |
# translator = i18nTranslator()
|
|
|
|
| 43 |
rand = random.Random()
|
| 44 |
translator = google_translator()
|
| 45 |
|
| 46 |
+
pipe = get_sd_small()
|
| 47 |
+
|
| 48 |
|
| 49 |
def infer(prompt: str, negative: str, width: int, height: int, sampler: str, steps: int, seed: int, scale):
|
| 50 |
global is_gpu_busy
|
model.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler, DPMSolverMultistepScheduler, \
|
| 3 |
+
OnnxStableDiffusionPipeline
|
| 4 |
+
|
| 5 |
+
import pipeline_openvino_stable_diffusion
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def get_sd_21():
|
| 9 |
+
model_id = "stabilityai/stable-diffusion-2-1-base"
|
| 10 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
| 11 |
+
|
| 12 |
+
if torch.cuda.is_available():
|
| 13 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 14 |
+
model_id,
|
| 15 |
+
scheduler=scheduler,
|
| 16 |
+
# safety_checker=None,
|
| 17 |
+
revision="fp16",
|
| 18 |
+
torch_dtype=torch.float16)
|
| 19 |
+
pipe = pipe.to('cuda')
|
| 20 |
+
else:
|
| 21 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 22 |
+
model_id,
|
| 23 |
+
scheduler=scheduler,
|
| 24 |
+
# safety_checker=None,
|
| 25 |
+
revision="fp16",
|
| 26 |
+
torch_dtype=torch.float16)
|
| 27 |
+
return pipe
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def get_sd_small():
|
| 31 |
+
model_id = 'OFA-Sys/small-stable-diffusion-v0'
|
| 32 |
+
scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler")
|
| 33 |
+
|
| 34 |
+
onnx_pipe = OnnxStableDiffusionPipeline.from_pretrained(
|
| 35 |
+
"OFA-Sys/small-stable-diffusion-v0",
|
| 36 |
+
scheduler=scheduler,
|
| 37 |
+
revision="onnx",
|
| 38 |
+
provider="CPUExecutionProvider",
|
| 39 |
+
)
|
| 40 |
+
pipe = pipeline_openvino_stable_diffusion.OpenVINOStableDiffusionPipeline.from_onnx_pipeline(onnx_pipe)
|
| 41 |
+
return pipe
|
model_test.py
CHANGED
|
@@ -9,10 +9,9 @@ pipe = StableDiffusionPipeline.from_pretrained(
|
|
| 9 |
model_id,
|
| 10 |
scheduler=scheduler,
|
| 11 |
# safety_checker=None,
|
| 12 |
-
revision="fp16"
|
| 13 |
-
torch_dtype=torch.float16)
|
| 14 |
|
| 15 |
-
pipe = pipe.to("
|
| 16 |
|
| 17 |
prompt = "a photo of an astronaut riding a horse on mars"
|
| 18 |
image = pipe(prompt).images[0]
|
|
|
|
| 9 |
model_id,
|
| 10 |
scheduler=scheduler,
|
| 11 |
# safety_checker=None,
|
| 12 |
+
revision="fp16")
|
|
|
|
| 13 |
|
| 14 |
+
pipe = pipe.to("cpu")
|
| 15 |
|
| 16 |
prompt = "a photo of an astronaut riding a horse on mars"
|
| 17 |
image = pipe(prompt).images[0]
|
pipeline_openvino_stable_diffusion.py
ADDED
|
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2022 The OFA-Sys Team.
|
| 2 |
+
# This source code is licensed under the Apache 2.0 license
|
| 3 |
+
# found in the LICENSE file in the root directory.
|
| 4 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
| 5 |
+
# All rights reserved.
|
| 6 |
+
# This source code is licensed under the Apache 2.0 license
|
| 7 |
+
# found in the LICENSE file in the root directory.
|
| 8 |
+
|
| 9 |
+
import inspect
|
| 10 |
+
from typing import Callable, List, Optional, Union
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
import torch
|
| 14 |
+
import os
|
| 15 |
+
|
| 16 |
+
from transformers import CLIPFeatureExtractor, CLIPTokenizer
|
| 17 |
+
|
| 18 |
+
from diffusers.configuration_utils import FrozenDict
|
| 19 |
+
from diffusers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
| 20 |
+
from diffusers.utils import deprecate, logging
|
| 21 |
+
from diffusers import OnnxRuntimeModel
|
| 22 |
+
|
| 23 |
+
from diffusers import OnnxStableDiffusionPipeline, DiffusionPipeline
|
| 24 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
| 25 |
+
from openvino.runtime import Core
|
| 26 |
+
ORT_TO_NP_TYPE = {
|
| 27 |
+
"tensor(bool)": np.bool_,
|
| 28 |
+
"tensor(int8)": np.int8,
|
| 29 |
+
"tensor(uint8)": np.uint8,
|
| 30 |
+
"tensor(int16)": np.int16,
|
| 31 |
+
"tensor(uint16)": np.uint16,
|
| 32 |
+
"tensor(int32)": np.int32,
|
| 33 |
+
"tensor(uint32)": np.uint32,
|
| 34 |
+
"tensor(int64)": np.int64,
|
| 35 |
+
"tensor(uint64)": np.uint64,
|
| 36 |
+
"tensor(float16)": np.float16,
|
| 37 |
+
"tensor(float)": np.float32,
|
| 38 |
+
"tensor(double)": np.float64,
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
logger = logging.get_logger(__name__)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class OpenVINOStableDiffusionPipeline(DiffusionPipeline):
|
| 45 |
+
vae_encoder: OnnxRuntimeModel
|
| 46 |
+
vae_decoder: OnnxRuntimeModel
|
| 47 |
+
text_encoder: OnnxRuntimeModel
|
| 48 |
+
tokenizer: CLIPTokenizer
|
| 49 |
+
unet: OnnxRuntimeModel
|
| 50 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
|
| 51 |
+
safety_checker: OnnxRuntimeModel
|
| 52 |
+
feature_extractor: CLIPFeatureExtractor
|
| 53 |
+
|
| 54 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
| 55 |
+
|
| 56 |
+
def __init__(
|
| 57 |
+
self,
|
| 58 |
+
vae_encoder: OnnxRuntimeModel,
|
| 59 |
+
vae_decoder: OnnxRuntimeModel,
|
| 60 |
+
text_encoder: OnnxRuntimeModel,
|
| 61 |
+
tokenizer: CLIPTokenizer,
|
| 62 |
+
unet: OnnxRuntimeModel,
|
| 63 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
| 64 |
+
safety_checker: OnnxRuntimeModel,
|
| 65 |
+
feature_extractor: CLIPFeatureExtractor,
|
| 66 |
+
requires_safety_checker: bool = True,
|
| 67 |
+
):
|
| 68 |
+
super().__init__()
|
| 69 |
+
|
| 70 |
+
if hasattr(scheduler.config,
|
| 71 |
+
"steps_offset") and scheduler.config.steps_offset != 1:
|
| 72 |
+
deprecation_message = (
|
| 73 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
| 74 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
| 75 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
| 76 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
| 77 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
| 78 |
+
" file")
|
| 79 |
+
deprecate("steps_offset!=1",
|
| 80 |
+
"1.0.0",
|
| 81 |
+
deprecation_message,
|
| 82 |
+
standard_warn=False)
|
| 83 |
+
new_config = dict(scheduler.config)
|
| 84 |
+
new_config["steps_offset"] = 1
|
| 85 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
| 86 |
+
|
| 87 |
+
if hasattr(scheduler.config,
|
| 88 |
+
"clip_sample") and scheduler.config.clip_sample is True:
|
| 89 |
+
deprecation_message = (
|
| 90 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
| 91 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
| 92 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
| 93 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
| 94 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
| 95 |
+
)
|
| 96 |
+
deprecate("clip_sample not set",
|
| 97 |
+
"1.0.0",
|
| 98 |
+
deprecation_message,
|
| 99 |
+
standard_warn=False)
|
| 100 |
+
new_config = dict(scheduler.config)
|
| 101 |
+
new_config["clip_sample"] = False
|
| 102 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
| 103 |
+
|
| 104 |
+
if safety_checker is None and requires_safety_checker:
|
| 105 |
+
logger.warning(
|
| 106 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
| 107 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
| 108 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
| 109 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
| 110 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
| 111 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
if safety_checker is not None and feature_extractor is None:
|
| 115 |
+
raise ValueError(
|
| 116 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
| 117 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
self.register_modules(
|
| 121 |
+
vae_encoder=vae_encoder,
|
| 122 |
+
vae_decoder=vae_decoder,
|
| 123 |
+
text_encoder=text_encoder,
|
| 124 |
+
tokenizer=tokenizer,
|
| 125 |
+
unet=unet,
|
| 126 |
+
scheduler=scheduler,
|
| 127 |
+
safety_checker=safety_checker,
|
| 128 |
+
feature_extractor=feature_extractor,
|
| 129 |
+
)
|
| 130 |
+
self.convert_to_openvino()
|
| 131 |
+
self.register_to_config(
|
| 132 |
+
requires_safety_checker=requires_safety_checker)
|
| 133 |
+
|
| 134 |
+
@classmethod
|
| 135 |
+
def from_onnx_pipeline(cls, onnx_pipe: OnnxStableDiffusionPipeline):
|
| 136 |
+
r"""
|
| 137 |
+
Create OpenVINOStableDiffusionPipeline from a onnx stable pipeline.
|
| 138 |
+
Parameters:
|
| 139 |
+
onnx_pipe (OnnxStableDiffusionPipeline)
|
| 140 |
+
"""
|
| 141 |
+
return cls(onnx_pipe.vae_encoder, onnx_pipe.vae_decoder,
|
| 142 |
+
onnx_pipe.text_encoder, onnx_pipe.tokenizer, onnx_pipe.unet,
|
| 143 |
+
onnx_pipe.scheduler, onnx_pipe.safety_checker,
|
| 144 |
+
onnx_pipe.feature_extractor, True)
|
| 145 |
+
|
| 146 |
+
def convert_to_openvino(self):
|
| 147 |
+
ie = Core()
|
| 148 |
+
|
| 149 |
+
# VAE decoder
|
| 150 |
+
vae_decoder_onnx = ie.read_model(
|
| 151 |
+
model=os.path.join(self.vae_decoder.model_save_dir, "model.onnx"))
|
| 152 |
+
vae_decoder = ie.compile_model(model=vae_decoder_onnx,
|
| 153 |
+
device_name="CPU")
|
| 154 |
+
|
| 155 |
+
# Text encoder
|
| 156 |
+
text_encoder_onnx = ie.read_model(
|
| 157 |
+
model=os.path.join(self.text_encoder.model_save_dir, "model.onnx"))
|
| 158 |
+
text_encoder = ie.compile_model(model=text_encoder_onnx,
|
| 159 |
+
device_name="CPU")
|
| 160 |
+
|
| 161 |
+
# Unet
|
| 162 |
+
unet_onnx = ie.read_model(
|
| 163 |
+
model=os.path.join(self.unet.model_save_dir, "model.onnx"))
|
| 164 |
+
unet = ie.compile_model(model=unet_onnx, device_name="CPU")
|
| 165 |
+
|
| 166 |
+
self.register_modules(vae_decoder=vae_decoder,
|
| 167 |
+
text_encoder=text_encoder,
|
| 168 |
+
unet=unet)
|
| 169 |
+
|
| 170 |
+
def _encode_prompt(self, prompt, num_images_per_prompt,
|
| 171 |
+
do_classifier_free_guidance, negative_prompt):
|
| 172 |
+
r"""
|
| 173 |
+
Encodes the prompt into text encoder hidden states.
|
| 174 |
+
Args:
|
| 175 |
+
prompt (`str` or `List[str]`):
|
| 176 |
+
prompt to be encoded
|
| 177 |
+
num_images_per_prompt (`int`):
|
| 178 |
+
number of images that should be generated per prompt
|
| 179 |
+
do_classifier_free_guidance (`bool`):
|
| 180 |
+
whether to use classifier free guidance or not
|
| 181 |
+
negative_prompt (`str` or `List[str]`):
|
| 182 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
| 183 |
+
if `guidance_scale` is less than `1`).
|
| 184 |
+
"""
|
| 185 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
| 186 |
+
|
| 187 |
+
# get prompt text embeddings
|
| 188 |
+
text_inputs = self.tokenizer(
|
| 189 |
+
prompt,
|
| 190 |
+
padding="max_length",
|
| 191 |
+
max_length=self.tokenizer.model_max_length,
|
| 192 |
+
truncation=True,
|
| 193 |
+
return_tensors="np",
|
| 194 |
+
)
|
| 195 |
+
text_input_ids = text_inputs.input_ids
|
| 196 |
+
untruncated_ids = self.tokenizer(prompt,
|
| 197 |
+
padding="max_length",
|
| 198 |
+
return_tensors="np").input_ids
|
| 199 |
+
|
| 200 |
+
if not np.array_equal(text_input_ids, untruncated_ids):
|
| 201 |
+
removed_text = self.tokenizer.batch_decode(
|
| 202 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1:-1])
|
| 203 |
+
logger.warning(
|
| 204 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 205 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}")
|
| 206 |
+
|
| 207 |
+
prompt_embeds = self.text_encoder(
|
| 208 |
+
{"input_ids":
|
| 209 |
+
text_input_ids.astype(np.int32)})[self.text_encoder.outputs[0]]
|
| 210 |
+
prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)
|
| 211 |
+
|
| 212 |
+
# get unconditional embeddings for classifier free guidance
|
| 213 |
+
if do_classifier_free_guidance:
|
| 214 |
+
uncond_tokens: List[str]
|
| 215 |
+
if negative_prompt is None:
|
| 216 |
+
uncond_tokens = [""] * batch_size
|
| 217 |
+
elif type(prompt) is not type(negative_prompt):
|
| 218 |
+
raise TypeError(
|
| 219 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 220 |
+
f" {type(prompt)}.")
|
| 221 |
+
elif isinstance(negative_prompt, str):
|
| 222 |
+
uncond_tokens = [negative_prompt] * batch_size
|
| 223 |
+
elif batch_size != len(negative_prompt):
|
| 224 |
+
raise ValueError(
|
| 225 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 226 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 227 |
+
" the batch size of `prompt`.")
|
| 228 |
+
else:
|
| 229 |
+
uncond_tokens = negative_prompt
|
| 230 |
+
|
| 231 |
+
max_length = text_input_ids.shape[-1]
|
| 232 |
+
uncond_input = self.tokenizer(
|
| 233 |
+
uncond_tokens,
|
| 234 |
+
padding="max_length",
|
| 235 |
+
max_length=max_length,
|
| 236 |
+
truncation=True,
|
| 237 |
+
return_tensors="np",
|
| 238 |
+
)
|
| 239 |
+
negative_prompt_embeds = self.text_encoder({
|
| 240 |
+
"input_ids":
|
| 241 |
+
uncond_input.input_ids.astype(np.int32)
|
| 242 |
+
})[self.text_encoder.outputs[0]]
|
| 243 |
+
negative_prompt_embeds = np.repeat(negative_prompt_embeds,
|
| 244 |
+
num_images_per_prompt,
|
| 245 |
+
axis=0)
|
| 246 |
+
|
| 247 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 248 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 249 |
+
# to avoid doing two forward passes
|
| 250 |
+
prompt_embeds = np.concatenate(
|
| 251 |
+
[negative_prompt_embeds, prompt_embeds])
|
| 252 |
+
|
| 253 |
+
return prompt_embeds
|
| 254 |
+
|
| 255 |
+
def __call__(
|
| 256 |
+
self,
|
| 257 |
+
prompt: Union[str, List[str]],
|
| 258 |
+
height: Optional[int] = 512,
|
| 259 |
+
width: Optional[int] = 512,
|
| 260 |
+
num_inference_steps: Optional[int] = 50,
|
| 261 |
+
guidance_scale: Optional[float] = 7.5,
|
| 262 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 263 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 264 |
+
eta: Optional[float] = 0.0,
|
| 265 |
+
generator: Optional[np.random.RandomState] = None,
|
| 266 |
+
latents: Optional[np.ndarray] = None,
|
| 267 |
+
output_type: Optional[str] = "pil",
|
| 268 |
+
return_dict: bool = True,
|
| 269 |
+
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
| 270 |
+
callback_steps: Optional[int] = 1,
|
| 271 |
+
):
|
| 272 |
+
if isinstance(prompt, str):
|
| 273 |
+
batch_size = 1
|
| 274 |
+
elif isinstance(prompt, list):
|
| 275 |
+
batch_size = len(prompt)
|
| 276 |
+
else:
|
| 277 |
+
raise ValueError(
|
| 278 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 282 |
+
raise ValueError(
|
| 283 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
if (callback_steps is None) or (callback_steps is not None and
|
| 287 |
+
(not isinstance(callback_steps, int)
|
| 288 |
+
or callback_steps <= 0)):
|
| 289 |
+
raise ValueError(
|
| 290 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 291 |
+
f" {type(callback_steps)}.")
|
| 292 |
+
|
| 293 |
+
if generator is None:
|
| 294 |
+
generator = np.random
|
| 295 |
+
|
| 296 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 297 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 298 |
+
# corresponds to doing no classifier free guidance.
|
| 299 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 300 |
+
|
| 301 |
+
prompt_embeds = self._encode_prompt(prompt, num_images_per_prompt,
|
| 302 |
+
do_classifier_free_guidance,
|
| 303 |
+
negative_prompt)
|
| 304 |
+
|
| 305 |
+
# get the initial random noise unless the user supplied it
|
| 306 |
+
latents_dtype = prompt_embeds.dtype
|
| 307 |
+
latents_shape = (batch_size * num_images_per_prompt, 4, height // 8,
|
| 308 |
+
width // 8)
|
| 309 |
+
if latents is None:
|
| 310 |
+
latents = generator.randn(*latents_shape).astype(latents_dtype)
|
| 311 |
+
elif latents.shape != latents_shape:
|
| 312 |
+
raise ValueError(
|
| 313 |
+
f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}"
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
# set timesteps
|
| 317 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
| 318 |
+
|
| 319 |
+
latents = latents * np.float64(self.scheduler.init_noise_sigma)
|
| 320 |
+
|
| 321 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 322 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 323 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 324 |
+
# and should be between [0, 1]
|
| 325 |
+
accepts_eta = "eta" in set(
|
| 326 |
+
inspect.signature(self.scheduler.step).parameters.keys())
|
| 327 |
+
extra_step_kwargs = {}
|
| 328 |
+
if accepts_eta:
|
| 329 |
+
extra_step_kwargs["eta"] = eta
|
| 330 |
+
|
| 331 |
+
# timestep_dtype = next(
|
| 332 |
+
# (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)"
|
| 333 |
+
# )
|
| 334 |
+
timestep_dtype = 'tensor(int64)'
|
| 335 |
+
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
|
| 336 |
+
|
| 337 |
+
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
|
| 338 |
+
# expand the latents if we are doing classifier free guidance
|
| 339 |
+
latent_model_input = np.concatenate(
|
| 340 |
+
[latents] * 2) if do_classifier_free_guidance else latents
|
| 341 |
+
latent_model_input = self.scheduler.scale_model_input(
|
| 342 |
+
torch.from_numpy(latent_model_input), t)
|
| 343 |
+
latent_model_input = latent_model_input.cpu().numpy()
|
| 344 |
+
|
| 345 |
+
# predict the noise residual
|
| 346 |
+
timestep = np.array([t], dtype=timestep_dtype)
|
| 347 |
+
unet_input = {
|
| 348 |
+
"sample": latent_model_input,
|
| 349 |
+
"timestep": timestep,
|
| 350 |
+
"encoder_hidden_states": prompt_embeds
|
| 351 |
+
}
|
| 352 |
+
noise_pred = self.unet(unet_input)[self.unet.outputs[0]]
|
| 353 |
+
# noise_pred = noise_pred[0]
|
| 354 |
+
|
| 355 |
+
# perform guidance
|
| 356 |
+
if do_classifier_free_guidance:
|
| 357 |
+
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
|
| 358 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
| 359 |
+
noise_pred_text - noise_pred_uncond)
|
| 360 |
+
|
| 361 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 362 |
+
scheduler_output = self.scheduler.step(
|
| 363 |
+
torch.from_numpy(noise_pred), t, torch.from_numpy(latents),
|
| 364 |
+
**extra_step_kwargs)
|
| 365 |
+
latents = scheduler_output.prev_sample.numpy()
|
| 366 |
+
|
| 367 |
+
# call the callback, if provided
|
| 368 |
+
if callback is not None and i % callback_steps == 0:
|
| 369 |
+
callback(i, t, latents)
|
| 370 |
+
|
| 371 |
+
latents = 1 / 0.18215 * latents
|
| 372 |
+
image = self.vae_decoder({"latent_sample":
|
| 373 |
+
latents})[self.vae_decoder.outputs[0]]
|
| 374 |
+
|
| 375 |
+
image = np.clip(image / 2 + 0.5, 0, 1)
|
| 376 |
+
image = image.transpose((0, 2, 3, 1))
|
| 377 |
+
|
| 378 |
+
if self.safety_checker is not None:
|
| 379 |
+
safety_checker_input = self.feature_extractor(
|
| 380 |
+
self.numpy_to_pil(image),
|
| 381 |
+
return_tensors="np").pixel_values.astype(image.dtype)
|
| 382 |
+
|
| 383 |
+
image, has_nsfw_concepts = self.safety_checker(
|
| 384 |
+
clip_input=safety_checker_input, images=image)
|
| 385 |
+
|
| 386 |
+
# There will throw an error if use safety_checker batchsize>1
|
| 387 |
+
images, has_nsfw_concept = [], []
|
| 388 |
+
for i in range(image.shape[0]):
|
| 389 |
+
image_i, has_nsfw_concept_i = self.safety_checker(
|
| 390 |
+
clip_input=safety_checker_input[i:i + 1],
|
| 391 |
+
images=image[i:i + 1])
|
| 392 |
+
images.append(image_i)
|
| 393 |
+
has_nsfw_concept.append(has_nsfw_concept_i[0])
|
| 394 |
+
image = np.concatenate(images)
|
| 395 |
+
else:
|
| 396 |
+
has_nsfw_concept = None
|
| 397 |
+
|
| 398 |
+
if output_type == "pil":
|
| 399 |
+
image = self.numpy_to_pil(image)
|
| 400 |
+
|
| 401 |
+
if not return_dict:
|
| 402 |
+
return (image, has_nsfw_concept)
|
| 403 |
+
|
| 404 |
+
return StableDiffusionPipelineOutput(
|
| 405 |
+
images=image, nsfw_content_detected=has_nsfw_concept)
|
requirements.txt
CHANGED
|
@@ -4,4 +4,8 @@ transformers
|
|
| 4 |
accelerate
|
| 5 |
scipy
|
| 6 |
safetensors
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
accelerate
|
| 5 |
scipy
|
| 6 |
safetensors
|
| 7 |
+
onnx
|
| 8 |
+
openvino
|
| 9 |
+
onnxruntime-openvino
|
| 10 |
+
ftfy
|
| 11 |
+
py-cpuinfo
|